Coaches Can Be Moral Role Models

Highly publicized ethical lapses by sports celebrities have raised questions about morality in athletics. If coaches help their athletes achieve peak physical performance, can they also teach their sports charges to make ethical choices?

New research from Concordia University has examined how coaches exert moral influence over athletes and how athletes respond. The study garnered data from 17 elite coaches who had once been athletes themselves.

The investigation found compelling evidence that coaches can provide important moral guidance for their athletic charges. "Coaches have a unique relationship with their athletes," says Sandra Peláez, who completed the study as part of her PhD thesis at Concordia's School of Graduate Studies and Department of Exercise Science.

"Coaches are mentors, parent figures, career enablers, and judges -- all at the same time," continues Peláez. "Every coach, however, doesn't influence every athlete he or she works with. The coach-athlete relationship is what enables a coach's influence and therefore determines how much influence a coach has. We found athletes would evaluate the relationship with their coaches and then decide whether to accept moral guidance or not."

Be good or be benched
Like most people, the study found athletes receive early moral direction from their parents. Yet as athletes become more engaged in sport, coaches become their most important source of moral guidance. This may be because athletes admire and trust their coaches. It may also be because coaches have significant power to enforce their standards, if only by "benching" players who do not adhere to rules.

While study participants agreed that moral influence was an important aspect of coach-athlete relationships, they found morality hard to define. In the course of the study, four core moral values emerged. These were "elite sports involvement" (e.g. discipline), "interaction with others" (e.g. respect), "self-related" (e.g. enjoying the sport) and "game" (e.g. striving to win).

Coaches' cultural backgrounds also influenced their definitions of morality. "Cultural differences are crucial -- and this study is the first to draw attention to this important point," says Peláez. "Things that are accepted in one culture are not accepted in others. For example, in some Eastern European countries, you are either training or you are in the hospital. If you skip practice, you will be punished because it's your moral obligation to be there. It's part of your commitment to your country, your teammates and your coach."

Moral concepts inherited
The study also broke new ground by showing that coaches inherit their moral values from their own coaches. Participants discussed moral issues using what their own coaches did as their frame of reference. Whether they copied these practices or criticized them, their understanding of morality was based on what they learned from their coaches when they were athletes.

"Getting coaches to articulate how they see their role -- how they feel they can influence the process -- is important," says Simon Bacon, a professor in Concordia's Department of Exercise Science and Sandra Peláez's thesis supervisor.

"Our study results will help us develop materials to increase moral behaviours in sports settings," he continues. "Many children participate in organised sport and spend considerable time with coaches. Understanding how coaches influence moral development and ultimately build character is important to society, as it offers another way to teach moral values."

Source: Concordia University

See also: Youth Sports Coaches Should Prioritize Teaching Over Winning and For Exercise, Kids Do As Parents Say Not As They Do

Youth Sports Coaches Should Prioritize Teaching Over Winning

Young athletes' achievement goals can change in a healthy way over the course of a season when their coaches create a mastery motivational climate rather than an ego orientation, University of Washington sport psychologists have found. A mastery climate stresses positive communication between coaches and athletes, teamwork and doing one's best. An ego climate, typified by many professional sports coaches, focuses on winning at all costs and being better than others.

"Much of life is affected by motivation and achievement," said Ronald Smith, a UW psychology professor and lead author of a new study. "Our study looked at children 9 to 13 years of age and there was no difference by age or sex. And it was also significant because it shows the influence of a mastery climate on children's achievement goals in a relatively short time, 12 weeks."

For several decades psychologists have believed that children under the age of 11 or 12 could not distinguish between effort and ability. That still may be true when it comes to academics, but the new research indicates that children as young as 9 can tell the difference between the two while participating in sports.
Frank Smoll, another UW psychology professor and co-author of the paper, said the research shows the importance of youth sport coaches at an earlier age than previously thought.  The study was recently published in the journal Motivation and Emotion.

"A coach can be the first non-parental figure who is a youngster's hero. People who volunteer to coach year after year don't affect just a few kids. They can be influencing thousands at very early ages," he said.

The study involved 243 children -- 145 boys and 98 girls -- playing basketball in two separate Seattle leagues. The athletes ranged in age from 9 to 13 and 80 percent were white. They were given questionnaires to fill out twice, once prior to the beginning of the season and again 12 weeks later when the season was almost over.

A previously published paper by the researchers from the same project showed that young athletes who played for coaches who were taught how to create a mastery climate reported lower levels of sport anxiety compared to youngsters who played for coaches who were not trained. The research also was the first to show that a coaching intervention is as effective with girls as it is with boys.

The new study found that athletes who played for coaches who used a mastery climate showed such things as greater enjoyment of basketball over the course of the season. In addition, levels of ego orientation dropped. The opposite was true for athletes playing for coaches relying on an ego-oriented style of leadership. These finding held for athletes across all ages.

"One consistent finding of our research is that a mastery climate retains more youngsters in sports. It keeps them coming back," said Smith. "Retention is a huge problem in some youth sports programs. An important reason to keep kids involved in sports is that it reduces obesity by helping them be more active."

Source: University of Washington

See also: Teaching Tactics and Techniques In Sports and Sideline Raging Soccer Moms (and Dads!) 

Please click here to take the Sports Are 80 Percent Mental 2-minute survey!

Little League Arm Injuries Jump Up

Throwing arm injuries are on the rise in Little League and other youth baseball programs. After these injuries occur, many players are out for the season; others require surgery and must refrain from play for an even longer duration; still others sustain injuries so severe that they cause permanent damage and are unable to continue playing baseball.

Three new studies presented at the at the 2010 Annual Meeting of the American Academy of Orthopaedic Surgeons (AAOS) address this critical issue, each offering new solutions to help prevent these injuries.

Pitchers and catchers under the age of 15 often experience tightness of a shoulder ligament known as the posterior-inferior glenohumeral ligament. If this ligament is not stretched, it will become increasingly tighter and more prone to pain or injury as the player ages, if that player continues to play baseball.

A study of 1,267 youth baseball players, led by Charles Metzger, MD, an orthopaedic surgeon specializing in upper extremities in Houston, Texas, found that a simple stretch known as the posterior capsular stretch can help.



"A posterior capsular stretch is done after play and since it is different from the general stretches players already know, it must be taught," says Dr. Metzger. "Once learned, however, it is very simple, and takes only five minutes to complete. Nearly 97 percent of young players who performed the stretch properly and consistently reported shoulder improvement."

Dr. Metzger supports Safe Throw, an injury-prevention and rapid return-to-play program. Instructions and diagrams showing how to perform the posterior capsular stretch can be found on www.safethrow.com.


The elbow is the most frequently reported area of overuse injury in child and adolescent baseball players. One type of overuse includes osteochondral lesions, which are tears or fractures in the cartilage and underlying bone, covering the elbow joint.

In a study led by Tetsuya Matsuura, MD, Department of Orthopedics, The University of Tokushima Graduate School, Institute of Health Bioscience in Tokushima, Japan, 152 baseball players were observed (ranging in age from 8 to12) for one season to study the injury incidence in relation to their playing positions. These players had no history of problematic elbow pain.

The results were as follows:

* 38 players, or 25 percent complained of elbow pain
* 26 (68.4 percent) had limitations of range of motion and/or tenderness on the elbow, and/or valgus stress pain (a stressful force placed upon the ligaments on the inner side of the elbow joint); and
* 22 (84.6 percent) had osteochondral lesions including:
  • 12 pitchers (54.6 percent)
  • 6 catchers (27.3 percent)
  • 3 infielders (13.6 percent)
  • 1 outfielder (4.5 percent).

Dr. Matsuura concluded, "Twenty-five percent of child and adolescent baseball players have elbow pain and nearly 15 percent sustain osteochodral lesions per year and pitchers have the highest rate of osteochondral lesions. If overuse injuries such as osteochrondral lesions occur, prompt diagnosis and treatment can prevent this injury from causing long-term damage. Better awareness and education among parents, players and especially coaches about risk factors can help prevent these injuries."

Reviewing -- and adhering to -- youth baseball throwing guidelines can help prevent injury

In another presentation, led by George A. Paletta, Jr., MD, an orthopaedic surgeon at the Orthopedic Center of St. Louis and Medical Director/Head Team Physician of the St. Louis Cardinals, discussed the increase in elbow injuries of young baseball players, including the increasing number of ligament reconstruction or "Tommy John" procedures performed.

Despite these increases, Dr. Paletta says there are identifiable -- and controllable -- risk factors of which young athletes, parents and coaches should be aware, to help reduce injury.

"A young athlete should never throw through pain or continue to pitch when he or she is obviously fatigued," says Dr. Paletta. "Additionally, parents should familiarize themselves with the recommended single game, weekly and season total pitch counts, suggested recovery times, and recommended ages for learning various pitches."

Dr. Paletta stresses that there must be a greater focus on education and research in this area, or more young baseball players will sustain serious injury.

Source: American Academy of Orthopaedic Surgeons

See also: Kids' Baseball Injuries Down But Some Still Play "Until It Hurts" and Baseball Brains - Pitching Into The World Series

Top Athletes Can React Quicker

A study conducted by scientists at Brunel University and at the University of Hong Kong has found that expert sportsmen are quicker to observe and react to their opponents' moves than novice players, exhibiting enhanced activation of the cortical regions of the brain.

The results of the study, which appear in the most recent issue of NeuroReport, show that more experienced sports players are better able to detect early anticipatory clues from opposing players' body movements, giving them a split second advantage in preparing an appropriate response.
 
Recent studies have demonstrated how expertise affects a range of perceptual-motor skills, from the imitation of hand actions in guitarists, to the learning of action sequences in pianists and dancers. In these studies, experts showed increased activation in the cortical networks of the brain compared with novices.

Fast ball sports are particularly dependent on time-critical predictions of the actions of other players and of the consequences of those actions, and for several decades, sports scientists have sought to understand how expertise in these sports is developed.

This most recent study, headed by Dr Michael Wright, was carried out by observing the reaction time and brain activity of badminton players of varying degrees of ability, from recreational players to international competitors. Participants were shown video clips of an opposing badminton player striking a shuttlecock and asked to predict where the shot would land.

In all participants, activation was observed in areas of the brain previously associated with the observation, understanding and preparation of human action; expert players showed enhanced brain activity in these regions and responded more quickly to the movements of their opponents.

Expertise in sports is not only dependent on physical prowess, then, but also on enhanced brain activity in these key areas of the brain. The observations made during this study will certainly have implications for how we perceive the nature of expertise in sport and perhaps even change the way athletes train.

See also: The Cognitive Benefits of Being a Sports Fan and How To See A 130 MPH Tennis Serve

Source:  Wolters Kluwer Health / Lippincott Williams & Wilkins and Functional MRI reveals expert-novice differences during sport-related anticipation : Neuroreport

Rotate It Like Ronaldo?





"Rotate it like Ronaldo" just doesn't have the same ring to it as "Bend it like Beckham", but the curving free kick is still one of the most exciting plays in soccer/football. Starting with Rivelino in the 1970 World Cup and on to the specialists of today, more players know how to do it and understand the basic physics behind it, but very few can perfect it. But, when it does happen, by chance or skill, it is the highlight of the game.



But let's take a look at this from the other side, through the eyes of the goalkeeper. Obviously, its their job to anticipate where the free kick is going and get to the spot before the ball crosses the line. He sets up his wall to, hopefully, narrow the width of the target, but he knows some players are capable of bending the ball around or over the wall towards the near post. If you watch highlights of free kick goals, you often see keepers flat-footed, just watching the ball go into the top corner. Did they guess wrong and then were not able to react? Did they guess right but misjudged the flight trajectory of the ball. How much did the sidespin or "bend" affect their perception of the exact spot where the ball will cross the line? To get an idea of the effect of spin, here's a compilation of Beckham's best free kick goals (there's a 15 second intro, then the highlights) :







Researchers at Queen's University Belfast and the University of the Mediterranean in France tried to figure this out in this paper. They wanted to compare the abilities of expert field players and expert goalkeepers to accurately predict if a free kick would result in an on-target goal or off-target non-goal. First, a bit about why the ball "bends". We can thank what's called the "Magnus Force" named after the 19th-century German physicist Gustav Magnus. As seen in the diagram below, as the ball spins counter clockwise (for a right-footed player using his instep and kicking the ball on the right side), the air pressure on the left side of the ball is lower as the spin is in the same direction as the oncoming air flow. On the right side of the ball, the spin is in the opposite direction of the air flow, building higher pressure. The ball will follow the path of least resistance, or pressure, and "bend" or curve from right to left. The speed of the spin and the velocity of the shot will determine the amount of bend. For a clockwise spin, the ball bends from left to right.







The researchers showed the players three different types of simulated kicks, a kick bent to the right, a kick bent to the left and a kick with no spin at all. They showed the players these simulations with virtual reality headsets and computer controlled "kicks" and "balls" which they could vary in flight with different programming. The balls would disappear from view at distances of 10 and 12.5 meters from the goal. The reasoning is that this cutoff would correspond with the deadline for reaction time to make a save on the ball. In other words, if the keeper does not correctly guess the final trajectory and position of the ball by this point, he most likely will not be able to physically get to the ball and make the save.







The results showed that both the players and the keepers, (all 20 were expert players from elite clubs like AC Milan, Marseille, Bayer Leverkusen, Schalke 04), were able to correctly predict the result of the kicks with no spin added. However, as 600 RPM spin, either clockwise or counter-clockwise, was added to the ball, the players success declined significantly. Interestingly, the keepers did no better, statistically, then the field players. The researchers conclusion was that the players used the "current heading direction" of the ball to predict the final result, rather than factoring the future affect of the acceleration and change in trajectory caused by the spin.



Just as we saw in the Baseball Hitting post, our human perception skill in tracking flying objects, especially those that are spinning and changing direction, are not perfect. If we understand the physics of the spinning ball, we can better guess at its path, but the pitcher or the free kick taker doesn't usually offer this information beforehand!



Craig, C.M., Berton, E., Rao, G., Fernandez, L., Bootsma, R.J. (2006). Judging where a ball will go: the case of curved free kicks in football. Naturwissenschaften, 93(2), 97-101. DOI: 10.1007/s00114-005-0071-0

Baseball Brains - Hitting Into The World Series

Ted Williams, arguably the greatest baseball hitter of all-time, once said, "I think without question the hardest single thing to do in sport is to hit a baseball". Williams was the last major league player to hit .400 for an entire season and that was back in 1941, 67 years ago! In the 2008 Major League Baseball season that just ended, the league batting average for all players was .264, while the strikeout percentage was just under 20%. So, in ten average at-bats, a professional ballplayer, paid millions of dollars per year, gets a hit less than 3 times but fails to even put the ball in play 2 times. So, why is hitting a baseball so difficult? What visual, cognitive and motor skills do we need to make contact with an object moving at 70-100 mph?

In the second of three posts in the Baseball Brains series, we'll take a quick look at some of the theory behind this complicated skill. Once again, we turn to Professor Mike Stadler and his book "The Psychology of Baseball" for the answers.  First, here's the "Splendid Splinter" in action:

A key concept of pitching and hitting in baseball was summed up long ago by Hall of Fame pitcher Warren Spahn, when he said, “Hitting is timing. Pitching is upsetting timing.” To sync up the swing of the bat with the exact time and location of the ball's arrival is the challenge that each hitter faces. If the intersection is off by even tenths of a second, the ball will be missed. Just as pitchers need to manage their targeting, the hitter must master the same two dimensions, horizontal and vertical. The aim of the pitch will affect the horizontal dimension while the speed of the pitch will affect the vertical dimension. The hitter's job is to time the arrival of the pitch based on the estimated speed of the ball while determining where, horizontally, it will cross the plate. The shape of the bat helps the batter in the horizontal space as its length compensates for more error, right to left. However, the narrow 3-4" barrel does not cover alot of vertical ground, forcing the hitter to be more accurate judging the vertical height of a pitch than the horizontal location. So, if a pitcher can vary the speed of his pitches, the hitter will have a harder time judging the vertical distance that the ball will drop as it arrives, and swing either over the top or under the ball.

A common coach's tip to hitters is to "keep your eye on the ball" or "watch the ball hit the bat". As Stadler points out, doing both of these things is nearly impossible due to the concept known as "angular velocity". Imagine you are standing on the side of freeway with cars coming towards you. Off in the distance, you are able to watch the cars approaching your position with re
lative ease, as they seem to be moving at a slower speed. As the cars come closer and pass about a 45 degree angle and then zoom past your position, they seem to "speed up" and you have to turn your eyes/head quickly to watch them. While the car is going at a constant speed, its angular velocity increases making it difficult to track.

This same concept applies to the hitter. As the graphic above shows (click to enlarge), the first few feet that a baseball travels when it leaves a pitcher's hand is the most important to the hitter, as the ball can be tracked by the hitter's eyes. As the ball approaches past a 45 degree angle, it is more difficult to "keep your eye on the ball" as your eyes need to shift through many more degrees of movement. Research reported by Stadler shows that hitters cannot watch the entire flight of the ball, so they employ two tactics.

First, they might follow the path of the ball for 70-80% of its flight, but then their eyes can't keep up and they estimate or extrapolate the remaining path and make a guess as to where they need to swing to have the bat meet the ball. In this case, they don't actually "see" the bat hit the ball. Second, they might follow the initial flight of the ball, estimate its path, then shift their eyes to the anticipated point where the ball crosses the plate to, hopefully, see their bat hit the ball. This inability to see the entire flight of the ball to contact point is what gives the pitcher the opportunity to fool the batter with the speed of the pitch. If a hitter is thinking "fast ball", their brain will be biased towards completing the estimated path across the plate at a higher elevation and they will aim their swing there. If the pitcher actually throws a curve or change-up, the speed will be slower and the path of the ball will result in a lower elevation when it crosses the plate, thus fooling the hitter.

To demonstrate the effect of reaction time for the batter, FSN Sport Science compared hitting a 95 mph baseball at 60' 6" versus a 70 mph softball pitched from 43' away.  The reaction time for the hitter went from .395 seconds to .350 seconds, making it actually harder to hit.  That's not all that makes it difficult.  Take a look:


As in pitching, the eyes and brain determine much of the success for hitters. The same concepts apply to hitting any moving object in sports; tennis, hockey, soccer, etc. Over time, repeated practice may be the only way to achieve the type of reaction speed that is necessary, but even for athletes who have spent their whole lives swinging a bat, there seems to be human limitation to success. Tracking a moving object through space also applies to catching a ball, which we'll look at next time.

Baseball Brains - Pitching Into The World Series




With the MLB League Championship Series' beginning this week, Twenty-six teams are wondering what it takes to reach the "final four" of baseball which leads to the World Series. The Red Sox, Rays, Phillies and Dodgers understand its not just money and luck. Over 162 games, it usually comes down to the fundamentals of baseball: pitching, hitting and catching. That sounds simple enough. So, why can't everyone execute those skills consistently? Why do pitchers struggle with their control? Why do batters strike out? Why do fielders commit errors? It turns out Yogi Berra was right when he said, "Baseball is 90% mental, and the other half is physical." In this three part series, each skill will be broken down into its cognitive sub-tasks and you may be surprised at the complexity that such a simple game requires of our brains.

First up, pitching or even throwing a baseball seems effortless until the pressure is on and the aim goes awry. Pitching a 3" diameter baseball 60 feet, 6 inches over a target that is 8 inches wide requires an accuracy of 1/2 to 1 degree. Throwing it fast, with the pressure of a game situation makes this task one of the hardest in sports. In addition, a fielder throwing to another fielder from 40, 60 or 150 feet away, sometimes off balance or on the run, tests the brain-body connection for accuracy. So, how do we do it? And how can we learn to do it more consistently? In his book, The Psychology of Baseball , Mike Stadler, professor of psychology at the University of Missouri, addresses each of these questions.

There are two dimensions to think about when throwing an object at a target: vertical and horizontal. The vertical dimension is a function of the distance of the throw and the effect of gravity on the object. So the thrower's estimate of distance between himself and the target will determine the accuracy of the throw vertically. Basically, if the distance is underestimated, the required strength of the throw will be underestimated and will lose the battle with gravity, resulting in a throw that will be either too low or will bounce before reaching the target. An example of this is a fast ball which is thrown with more velocity, so will reach its target before gravity has a path-changing effect on it. On the other hand, a curve ball or change-up may seem to curve downward, partly because of the spin put on the ball affecting its aerodynamics, but also because these pitches are thrown with less force, allowing gravity to pull the ball down. In the horizontal dimension, the "right-left" accuracy is related to more to the "aim" of the throw and the ability of the thrower to adjust hand-eye coordination along with finger, arm, shoulder angles and the release of the ball to send the ball in the intended direction.

So, how do we improve accuracy in both dimensions? Prof. Stadler points out that research shows that skill in the vertical/distance estimating dimension is more genetically determined, while skill horizontally can be better improved with practice. Remember those spatial organization tests that we took that show a set of connected blocks in a certain shape and then show you four more sets of conected blocks? The question is which of the four sets could result from rotating the first set of blocks. Research has shown that athletes that are good at these spatial relations tests are also accurate throwers in the vertical dimension. Why? The thought is that those athletes are better able to judge the movement of objects through space and can better estimate distance in 3D space. Pitchers are able to improve this to an extent as the distance to the target is fixed. A fielder, however, starts his throw from many different positions on the field and has more targets (bases and cut-off men) to choose from, making his learning curve a bit longer.

If a throw or pitch is off-target, then what went wrong? Research has shown that
despite all of the combinations of fingers, hand, arm, shoulder and body movements, it seems to all boil down to the timing of the finger release of the ball. In other words, when the pitcher's hand comes forward and the fingers start opening to allow the ball to leave. The timing of this release can vary by hundredths of a second but has significant impact on the accuracy of the throw. But, its also been shown that the throwing action happens so fast, that the brain could not consciously adjust or control that release in real-time. This points to the throwing action being controlled by what psychologists call an automated "motor program" that is created through many repeated practice throws. But, if a "release point" is incorrect, how does a pitcher correct that if they can't do so in real-time? It seems they need to change the embedded program by more practice.

Another component of "off-target" pitching or throwing is the psychological side of a player's mental state/attitude. Stadler identifies research that these motor programs can be called up by the brain by current thoughts. There seems to be "good" programs and "bad" programs, meaning the brain has learned how to throw a strike and learned many programs that will not throw a strike. By "seeding" the recall with positive or negative thoughts, the "strike" program may be run, but so to can the "ball" program. So, if a pitcher thinks to himself, "don't walk this guy", he may be subconsciously calling up the "ball" program and it will result in a pitch called as a ball. So, this is why sports pscyhologists stress the need to "think positively", not just for warm and fuzzy feelings, but the brain may be listening and will instruct your body what to do.



So, assuming Josh Beckett of the Red Sox is getting the ball across the plate, will the Rays hit it? That is the topic for next time when we look at hitting an object that is moving at 97 MPH and reaches you in less than half a second.

The Big Mo' - Momentum In Sports

A player can feel it during a game when they hit a game-changing home run or when they go 0 for 4 at the plate. A team can feel it when they come back from a deficit late in the game or when their lead in the division vanishes. A fan can feel it as their team "catches fire" or goes "as cold as ice". And, play-by-play announcers love to talk about it. 

We know it as the "Big Mo", the "Hot Hand", and being "In The Zone" while the psychologists call it Psychological Momentum. But, does it really exist? Is it just a temporary shift in confidence and mood or does it actually change the outcome of a game or a season? As expected, there are lots of opinions available.

The Oxford Dictionary of Sports Science defines psychological momentum as, "the positive or negative change in cognition, affect, physiology, and behavior caused by an event or series of events that affects either the perceptions of the competitors or, perhaps, the quality of performance and the outcome of the competition. Positive momentum is associated with periods of competition, such as a winning streak, in which everything seems to ‘go right’ for the competitors. In contrast, negative momentum is associated with periods, such as a losing streak, when everything seems to ‘go wrong’." 


The interesting phrase in this definition is that Psychological Momentum (PM) "affects either the perceptions of the competitors or, perhaps, the quality of performance and the outcome of the competition." Most of the analyses on PM focus on the quantitative side to try to prove or disprove PM's affect on individual stats or team wins and losses.

Regarding PM in baseball, a Wall St. Journal article looked at last year's MLB playoffs, only to conclude there was no affect on postseason play coming from team momentum at the end of the regular season. More recently, Another Cubs Blog also looked at momentum into this year's playoffs including opinion from baseball stats guru, Bill James, another PM buster. For basketball, Thomas Gilovich's 1985 research into streaky, "hot hand" NBA shooting is the foundation for most of today's arguments against the existence of PM, or at least its affect on outcomes.

This view that if we can't see it in the numbers, more than would be expected, then PM does not exist may not capture the whole picture. Lee Crust and Mark Nesti have recommended that researchers look at psychological momentum more from the qualitative side. Maybe there are more subjective measures of athlete or team confidence that contribute to success that don't show up in individual stats or account for teams wins and losses. 


As Jeff Greenwald put it in his article, Riding the Wave of Momentum, "The reason momentum is so powerful is because of the heightened sense of confidence it gives us -- the most important aspect of peak performance. There is a term in sport psychology known as self-efficacy, which is simply a player's belief in his/her ability to perform a specific task or shot. Typically, a player’s success depends on this efficacy. During a momentum shift, self-efficacy is very high and players have immediate proof their ability matches the challenge. As stated earlier, they then experience subsequent increases in energy and motivation, and gain a feeling of control. In addition, during a positive momentum shift, a player’s self-image also changes. He/she feels invincible and this takes the "performer self" to a higher level."

There would seem to be three distinct areas of focus for PM; an individual's performance within a game, a team's performance within a game and a team's performance across a series of games. So, what are the relationships between these three scenarios? Does one player's scoring streak or key play lift the team's PM, or does a close, hard-fought team win rally the players' morale and confidence for the next game? 


Seeing the need for a conceptual framework to cover all of these bases, Jim Taylor and Andrew Demick created their Multidimensional Model of Momentum in Sports, which is still the most widely cited model for PM. Their definition of PM, "a positive or negative change in cognition, affect, physiology, and behavior caused by an event or series of events that will result in a commensurate shift in performance and competitive outcome", leads to the six key elements to what they call the "momentum chain".

First, momentum shifts begin with a "precipitating event", like an interception or fumble recovery in football or a dramatic 3-point shot in basketball. The effect that this event has on each athlete varies depending on their own perception of the game situation, their self-confidence and level of self-efficacy to control the situation.

Second, this event leads to "changes in cognition, physiology, and affect." Again, depending on the athlete, his or her base confidence will determine how strongly they react to the events, to the point of having physiological changes like tightness and panic in negative situations or a feeling of renewed energy after positive events.

Third, a "change in behavior" would come from all of these internal perceptions. Coaches and fans would be able to see real changes in the style of play from the players as they react to the positive or negative momentum chain.

Fourth, the next logical step after behavior changes is to notice a "change in performance." Taylor and Demick note that momentum is the exception not the norm during a game. Without the precipitating event, there should not be noticeable momentum shifts.

Fifth, for sports with head to head competition, momentum is a two-way street and needs a "contiguous and opposing change for the opponent." So, if after a goal, the attacking team celebrates some increased PM, but the defending team does not experience an equal negative PM, then the immediate flow of the game should remain the same. Its only when the balance of momentum shifts from one team to the other. Levels of experience in athletes has been shown to mitigate the effects of momentum, as veteran players can handle the ups and downs of a game better than novices.

Finally, at the end of the chain, if momentum makes it that far, there should be an immediate outcome change. When the pressure of a precipitating event occurs against a team, the players may begin to get out of their normal, confident flow and start to overanalyze their own performance and skills. We saw this in Dr. Sian Beilock's research in our article, Putt With Your Brain - Part 2. As an athlete's skills improve they don't need to consciously focus on them during a game. But pressure brought on by a negative event can take them out of this "automatic" mode as they start to focus on their mechanics to fix or reverse the problem. 


As Patrick Cohn, a sport psychologist, pointed out in a recent USA Today article on momentum, "You stop playing the game you played to be in that position. And the moment you switch to trying not to screw up, you go from a very offensive mind-set to a very defensive mind-set. If you're focusing too much on the outcome, it's difficult to play freely. And now they're worried more about the consequences and what's going to happen than what they need to do right now."


There is no doubt that we will continue to hear references to momentum swings during games. When you do, you can conduct your own mini experiment and watch the reactions of the players and the teams over the next section of the game to see if that "precipitating event" actually leads to a game-changing moment.

ResearchBlogging.org


Jim Taylor, Andrew Demick (1994). A multidimensional model of momentum in sports Journal of Applied Sport Psychology, 6 (1), 51-70 DOI: 10.1080/10413209408406465

Imagine Winning Gold In Beijing

Imagine winning a gold medal at the Beijing Olympics.  No really, go ahead, close your eyes and visualize it.  What did you see?  Were you standing on the medal platform looking out at the crowd, waving and taking in the scene through your own eyes, or were you a spectator in the crowd watching yourself getting the medal put around your neck?  This choice between "first-person" or "third-person" visualization actually makes a difference on our motivation to achieve a future goal.


Noelia A. Vasquez, at York University and Roger Buehler, at Wilfrid Laurier University wanted to see if there was a link between our visualization perspective and our motivation level to achieve the imagined goal.  They asked 47 university students to imagine the successful completion of a performance task that was in their near future, whether it be a speech in a class or an upcoming athletic competition.  They were also asked to assume that the task went extremely well.  One group of students were asked to imagine this scene "through their own eyes" seeing the environment as they would actually experience it.  The second group was told to use the third-person perspective, pretending they were "in the crowd" watching themselves as others would see them achieving this goal.  Next, they were given a survey that asked each group how motivated they were to now go make this successful scene a reality. 


As hypothesized, the group that saw the scene through their audience's eyes (third-person) ranked their motivation to now succeed significantly higher than those that imagined it through their own eye (first-person).  The authors' explanation for this is the perceived additional importance attached to the task when we consider other peoples' opinion of us and our natural desire to increase our status in our peer group.  Seeing this newly elevated social acceptance and approval of ourselves from the eyes of our peers motivates us even more to reach for our goals.


The road to achievements like an Olympic gold medal is a long one with many steps along the way.  Over the years, as athletes maintain their training regimen, they can keep imagining the future goal, but they may need to also look back and recognize the improvements they have made over time.  This "progress to date" assessment will also provide motivation to keep going once they realize the hard work is actually having the desired effect and moving them along the desired path.  So, as they review their past to present progress, does the first or third person perspective make a difference there as well?



Researchers from Cornell, Yale and Ohio State, led by Thomas Gilovich, professor of psychology at Cornell, designed an experiment to find out.  They recruited a group of university students who had described their high-school years as "socially awkward" to now recall those years and compare them with their social skill in college.  The first group was asked to recall the past from a first-person perspective, just as their memories would provide them.  The second group was asked to remember themselves through the perspective of their classmates (third-person).  Next, each group was asked to assess the personal change they had accomplished since then.


As predicted, the group that had recalled their former selves in the third person reported greater progress and change towards a more social and accepted person in college than the group that remembered in the first-person.  "We have found that perspective can influence your interpretation of past events. In a situation in which change is likely, we find that observing yourself as a third person -- looking at yourself from an outside observer's perspective -- can help accentuate the changes you've made more than using a first-person perspective," says Gilovich.  "When participants recalled past awkwardness from a third-person perspective, they felt they had changed and were now more socially skilled," said Lisa K. Libby, an assistant professor of psychology at Ohio State University. "That led them to behave more sociably and appear more socially skilled to the research assistant."


So, whether looking forward or backward, seeing yourself through other's eyes seems to provide more motivation to not only continue the road to success, but to appreciate the progress you have made. 


Then the actual day of competition arrives.  It is one hour before you take your position on the starting blocks at the "Bird's Nest" stadium in Beijing or on the mat at the National Indoor Stadium for the gymnastics final.  Should you be imagining the medal ceremony and listening to your country's national anthem at that point?  In a recent Denver Post article, Peter Haberl, senior sports psychologist for the U.S. Olympic Committee says, "It takes a great deal of ability and skill to stay focused on the task at hand."  

He distinguishes between an "outcome" goal, (receiving the medal) and "performance" (improving scores/times) and "process" (improving technique) goals.  "The difference is that these types of goals are much more under the control of the athlete," explains Haberl. "The process goal, in particular, directs attention to the here and now, which allows the athlete to totally focus on the doing of the activity; this is key to performing well.  This sounds simple but it really is quite difficult because the mind takes you to the past and the future all the time, particularly in the Olympic environment with its plethora of distractions and enticing rewards." 


Mental imagery is a well-known tool for every athlete to make distant and difficult goals seem attainable.  By seeing your future accomplishments through the eyes of others, you can attach more importance and reward to achieving them.  Just imagine yourself in London in 2012!

ResearchBlogging.org

Vasquez, N.A. (2007). Seeing Future Success: Does Imagery Perspective Influence Achievement Motivation?. Personality and Social Psychology Bulletin, 33(10), 1392-1405.


Libby, L.K., Eibach, R.P., Gilovich, T. (2005). Here's Looking at Me: The Effect of Memory Perspective on Assessments of Personal Change.. Journal of Personality and Social Psychology, 88(1), 50-62. DOI: 10.1037/0022-3514.88.1.50

Lifting The Fog Of Sports Concussions


A concussion, clinically known as a Mild Traumatic Brain Injury (MTBI), is one of the most common yet least understood sports injuries.  According to the Centers for Disease Control, there are as many as 300,000 sports and recreation-related concussions each year in the U.S., yet the diagnosis, immediate treatment and long-term effects are still a mystery to most coaches, parents and even some clinicians.  

The injury can be deceiving as there is rarely any obvious signs of trauma.  If the head is not bleeding and the player either does not lose consciouness or regains it after a brief lapse, the potential damage is hidden and the usual "tough guy" mentality is to "shake it off" and get back in the game.


Leigh Steinberg, agent and representative to some of the top professional athletes in the world (including NFL QBs Ben Roethlisberger and Matt Leinart), is tired of this ignorance and attitude.  "My clients, from the day they played Pop Warner football, are taught to believe ignoring pain, playing with pain and being part of the playing unit was the most important value," Steinberg said, "I was terrified at the understanding of how tender and narrow that bond was between cognition and consciousness and dementia and confusion".  Which is why he was the keynote speaker at last week's "New Developments in Sports-Related Concussions" conference hosted by the University of Pittsburgh Medical College Sport Medicine Department in Pittsburgh. 

Leading researchers gathered to discuss the latest research on sports-related concussions, their diagnosis and treatment.  "There's been huge advancement in this area," said Dr. Micky Collins, the assistant director for the UPMC Sports Medicine Program. "We've learned more in the past five years than the previous 50 combined."


So, what is a concussion?  The CDC defines a concussion as "a complex pathophysiologic process affecting the brain, induced by traumatic biomechanical forces secondary to direct or indirect forces to the head."  Being a "mild" form of traumatic brain injury, it is generally believed that there is no actual structural damage to the brain from a concussion, but more a disruption in the biochemistry and electrical processes between neurons.  

The brain is surrounded by cerebrospinal fluid, which is supposed to provide some protection from minor blows to the head.  However, a harder hit can cause rotational forces that affect a wide area of the brain, but most importantly the mid-brain and the reticular activating system which may explain the loss of consciousness in some cases.  

For some athletes, the concussion symptoms take longer to disappear in what is known as post-concussion syndrome.  It is not known whether this is from some hidden structural damage or more permanent disruption to neuronal activity.  Repeated concussions over time can lead to a condition known as dementia pugilistica, with long-term impairments to speech, memory and mental processing.

After the initial concussion, returning to the field before symptoms clear raises the risk of second impact syndrome, which can cause more serious, long-term effects.  As part of their "Heads Up" concussion awareness campaign, the CDC offers this video story of Brandon Schultz, a high school football player, who was not properly diagnosed after an initial concussion and suffered a second hit the following week, which permanently changed his life.  Without some clinical help, the player, parents and coach can only rely on the lack of obvious symptoms before declaring a concussion "healed".  

However, making this "return to play" decision is now getting some help from some new post-concussion tests.  The first is a neurological skills test called ImPACT (Immediate Post-Concussion and Cognitive Testing) created by the same researchers at UPMC.  It is an online test given to athletes after a concussion to measure their performance in attention span, working memory, sustained and selective attention time, response variability, problem solving and reaction time.  Comparing a "concussed" athlete's performance on the test with a baseline measurement will help the physician decide if the brain has healed sufficiently.

However, Dr. Collins and his team wanted to add physiological data to the psychological testing to see if there was a match between brain activity, skill testing and reported symptoms after a concussion.  In a study released last year in the journal Neurosugery, they performed functional MRI (fMRI) brain imaging studies on 28 concussed high-school athletes while they performed certain working memory tasks to see if there was a significant link between performance on the tests and changes in brain activation.  They were tested about one week after injury and again after the normal clinical recovery period.

“In our study, using fMRI, we demonstrate that the functioning of a network of brain regions is significantly associated with both the severity of concussion symptoms and time to recover,” said Jamie Pardini, Ph.D., a neuropsychologist on the clinical and research staff of the UPMC concussion program and co-author of the study.  
 "We identified networks of brain regions where changes in functional activation were associated with performance on computerized neurocognitive testing and certain post-concussion symptoms,” Dr. Pardini added. "Also, our study confirms previous research suggesting that there are neurophysiological abnormalities that can be measured even after a seemingly mild concussion.” 

Putting better assessment tools in the hands of athletic trainers and coaches will provide evidence-based coaching decisions that are best for the athlete's health.  Better decisions will also ease the minds of parents knowing their child has fully recovered from their "invisible" injury.


ResearchBlogging.org

Lovell, M.R., Pardini, J.E., Welling, J., Collins, M.W., Bakal, J., Lazar, N., Roush, R., Eddy, W.F., Becker, J.T. (2007). FUNCTIONAL BRAIN ABNORMALITIES ARE RELATED TO CLINICAL RECOVERY AND TIME TO RETURN-TO-PLAY IN ATHLETES. Neurosurgery, 61(2), 352-360. DOI: 10.1227/01.NEU.0000279985.94168.7F

Does Practice Make Perfect?


For years, sport science and motor control research has added support to the fundamental assertions that "practice makes perfect" and "repetition is the mother of habit".  Shooting 100 free throws, kicking 100 balls on goal or fielding 100 ground balls must certainly build the type of motor programs in the brain that will only help make the 101st play during the game.  K. Anders Ericsson, the "expert on experts", has defined the minimum amount of "deliberate practice" necessary to raise any novice to the level of expert as 10 years or 10,000 hours.

However, many questions still exist as to exactly how we learn these skills.  What changes happen in our brains when we teach ourselves a new task?  What is the most effective and efficient way to master a skill?  Do we have to be actually performing the skill to learn it, or could we just watch and learn? 


Then, once we have learned a new skill and can repeat it with good consistency, why can't we perform it perfectly every time?  Why can't we make every free throw, score with every shot on goal, and field each ground ball with no errors?  We would expect our brain to just be able to repeat this learned motor program with the same level of accuracy.

To answer these questions, we look at two recent studies.  The first, by a team at Dartmouth's Department of Psychological and Brain Sciences, led by Emily Cross, who is now a post-doc at Max Planck Institute for Cognitive and Brain Sciences in Leipzig, Germany, wanted to know if we need to physically perform a new task to learn it, or if merely observing others doing it would be enough. 

The "task" they chose was to learn new dance steps from a video game eerily similar to "Dance, Dance Revolution".  If you (or your kids) have never seen this game, its a video game that you actually get up off the couch and participate in, kind of like the Nintendo Wii.  In this game, a computer screen (or TV) shows you the dance moves and you have to imitate them on a plastic mat on the floor connected to the game.  If you make the right steps, timed to the music, you score higher.

Cross and the team "taught" their subjects in three groups.  The first group was able to view and practice the new routine.  The second group only was allowed to watch the new routine, but not physically practice it.  The third group was a control group that did not get any training at all.  The subjects were later scanned using functional magnetic resonance imaging (fMRI) while they watched the same routine they had either learned (actively or passively) or not seen (the control group).


As predicted, they found that the two trained groups showed common activity in the Action Observance Network (AON) in the brain (see image on left), a group of neural regions found mostly in the inferior parietal and premotor cortices of the brain (near the top of the head) responsible for motor skills and some memory functions.  In other words, whether they physically practised the new steps or just watched the new steps, the same areas of the brain were activated and their performance of the new steps were significantly similar.  The team put together a great video summarizing the experiment.  

One of the themes from this study is that, indeed, learning a motor skill takes place in the brain.  This may seem like an obvious statement, but its important to accept that the movements that our limbs make when performing a skill are controlled by the instructions provided from the brain.  So, what happens when the skill breaks down?  Why did the quarterback throw behind the receiver when we have seen him make that same pass accurately many times?  


To stay true to our theme, we have to blame the brain.  It may be more logical to point to a mechanical breakdown in the player's form or body movements, but the "set-up" for those movements starts with the mental preparation performed by the brain.


In the second study, electrical engineers at Stanford University took a look at these questions to try to identify where the inconsistencies of movement start.  They chose to focus on the "mental preparation" stage which occurs just before the actual movement.  During this stage, the brain plans the coordination and goal for the movement prior to initiating it.  The team designed a test where monkeys would reach for a green dot or a red dot.  If green, they were trained to reach slowly for the dot; if red, to reach quickly.  By monitoring the areas of the monkeys' brains through fMRI, they observed activity in the AON prior to the move and during the move.  


Over repeated trials, changes in reach speed were associated with changes in pre-movement activity.  So, instead of perfectly consistent reach times by the monkeys, they saw variation, like we might see when trying to throw strikes with a baseball many times in a row.  Their conclusion was that this planning activity in the brain does have an effect on the outcome of the activity.  Previously, research had focused only on breakdowns during the actual move and in the mechanics of muscles.  This study shows that the origin of the error may start earlier.


As electrical engineering Assistant Professor Krishna Shenoy stated, "the main reason you can't move the same way each and every time, such as swinging a golf club, is that your brain can't plan the swing the same way each time."  

Postdoctoral researcher and co-author Mark Churchland added, "The nervous system was not designed to do the same thing over and over again.  The nervous system was designed to be flexible. You typically find yourself doing things you've never done before." 
The Stanford team also has made a nice short video synopsis of their study.

Does practice make perfect?  First, we must define "practice".  We saw that it could be either active or passive.  Second, we know sports skills are never "perfect" all the time, and need to understand where the error starts before we can begin to fix it.

Stats Vs. Hunches - The Moneyball Era In Sports

Most baseball general managers live in obscurity most of their careers.  Its their first hire, the manager, that usually gets the red hot spotlight, after every win and loss, second-guessed by reporters with recorders and then later by fans.  The GM puts the players on the field and lets the manager and his coaches take it from there.  Billy Beane , Oakland A's general manager, could have also been an unknown, albeit interesting, name to the baseball audience if it were not for author Michael Lewis' 2003 book, Moneyball .  Moneyball was a runaway hit (even today, 5 years later, it is #19 on Amazon's list of baseball books).  It has morphed into a full-fledged catchphrase philosophy used by everyone from Wall Street (where Beane borrowed the concept) to business consulting.  The general theme is to find undervalued assets (ballplayers) by focusing on statistics that your competition is ignoring.  Of course, you have to believe in your metrics and their predictive value for success (why has everyone else ignored these stats?)  The source of most of Beane's buried treasure of stats was Bill James and his Sabrmetrics.  Like picking undervalued stocks of soon to explode companies, Beane looked for the diamond in the dust (pun intended) and sign the player while no one was looking.  Constrained by his "small-market" team revenues, or maybe by his owners' crowbar-proof wallets, he needed to make the most from every dollar.


The combination of a GM's shrewd player selection and a manager who can develop that talent should reward the owner with the best of both worlds: an inexpensive team that wins.  This salary vs. performance metric is captured perfectly in this "real-time" graphic at BenFry.com .  It connects the updated win-loss record for each MLB team with its payroll to show the "bang for the buck" that the GMs/managers are getting from their players.  Compare the steep negative relationship for the Mets, Yankees, Tigers and Mariners with the amazing results of the Rays, Twins and Beane's own A's.  While the critics of Moneyball tactics would rightly point to the A's lack of a World Series win or even appearance, the "wins to wages" ratio has not only kept Beane in a job but given him part ownership in the A's and now the newly resurrected San Jose Earthquakes of soccer's MLS.  Beane believes the same search for meaningful and undiscovered metrics in soccer can give the Quakes the same arbitrage advantage.  In fact, there are rumours that he will focus full-time on conquering soccer as he knows there are much bigger opportunities worldwide if he can prove his methods within MLS.

In baseball, Beane relied on the uber-stat guru, Bill James, for creative and more relevant statistical slices of the game.  In soccer, he is working with some top clubs including his new favorite, Tottenham-Hotspur, of the English Premier League.  While he respects the history and tradition of the game, he is confident that his search for a competitive advantage will uncover hidden talents.  Analytical tools from companies such as Opta in Europe and Match Analysis in the U.S. have combined video with detailed stat breakdowns of every touch of the ball for every player in each game.  Finding the right pattern and determinant of success has become the key, according to Match Analysis president Mark Brunkhart as quoted earlier this year,
"You don't need statistics to spot the real great players or the really bad ones. The trick is to take the players between those two extremes and identify which are the best ones.  If all you do is buy the players that everyone else wants to buy then you will end up paying top dollar. But if you take Beane's approach - to use a disciplined statistical process to influence the selection of players who will bring the most value - then you are giving yourself the best chance of success. Who would not want to do that?"

Not to feel left out (or safe from scrutiny), the NBA now has its own sport-specific zealots.  The Association for Professional Basketball Research (APBR) devotes its members time and research to finding the same type of meaningful stats that have been ignored by players, coaches and fans.  They, too, have their own Moneyball-bible, "The Wages of Wins " by David Berri, Martin Schmidt, and Stacey Brook.  David Berri's WoW journal/blog regularly posts updates and stories related to the current NBA season and some very intriguing analysis of its players and the value of their contributions.  None other than Malcolm Gladwell, of Tipping Point and Blink fame, provided the review of Wages of Wins for the New Yorker.  One of the main stats used is something called a player's "Win Score" which attempts to measure the complete player, not just points, rebounds and assists.
Win Score (WS) = PTS + REB + STL + ½*BLK + ½*AST – FGA – ½*FTA – TO – ½*PF.   (Points, Rebounds, Steals, Blocked Shots, Assists, Field Goal Attempts, Free Throw Attempts, Turnovers, Personal Fouls)

WS is then adjusted for minutes played with the stat, WS48.  Of course, different player positions will have different responsibilities, so to compare players of different positions the Position Adjusted Win Score per 48 minutes or PAWS48 is calculated as: WS48 – Average WS48 at primary position played.  This allows an apples to apples comparison between players at a position, and a reasonable comparison of players' values across positions.  Berri's latest article looks at the fascination with Michael Beasley and some early comparisons in the Orlando Summer League. 

Will these statistics-based approaches to player evaluation be accepted by the "establishment"?  Judging by the growing number of young, MBA-educated GMs in sports, there is a movement towards more efficient and objective selection criteria.  Just as we saw in previous evidence-based coaching articles , the evidence-based general manager is here to stay.

Play Better Golf By Playing Bigger Holes

Here are some quotes we have all heard (or said ourselves) on the golf course or at the ball diamond.

On a good day:
"It was like putting into the Grand Canyon"
"The baseball looked like a beach ball up there today"

On a bad day:
"The hole was as small as a thimble"
"I don't know, it looked like he was throwing marbles"

The baseball and the golf hole are the same size every day, so are these comments meaningless or do we really perceive these objects differently depending on the day's performance? And, does our performance influence our perception or does our perception help our performance?

Jessica Witt, an assistant professor of psychological science at the University of Virginia has made two attempts at the answer. First, in a 2005 study, "See the Ball, Hit the Ball", her team studied softball players by designing an experiment that tried to correlate perceived softball size to performance. She interviewed players immediately after a game and asked them to estimate the size of the softball by picking a circle off of a board that contained several different sizes. She then found out how that player had done at the plate that day. 


As expected, the players that were hitting well chose the larger sized circles to represent the ball size, while the underperforming hitters chose the smaller circles. The team was not able to answer the question of causality, so they expanded the research to other sports.

Fast forward to July, 2008 and Witt and her team have just released a very similar study focused on golf, "Putting to a bigger hole: Golf performance relates to perceived size". Using the same experiment format, players who had just finished a round of golf were asked to pick out the perceived size of the hole from a collection of holes that varied in diameter by a few centimeters. Once again, the players who had scored well that day picked the larger holes and vice versa for that day's hackers. So, the team came to the same conclusion that there is some relationship between perception and performance, but could not figure out the direction of the effect. Ideally, a player could "imagine" a larger hole and then play better because of that visual cue.

Researchers at Vanderbilt University may have the answer. In a study, "The Functional Impact of Mental Imagery on Conscious Perception", the team led by Joel Pearson, wanted to see what influence our "Mind's Eye" has on our actual perception. In their experiment, they asked volunteers to imagine simple patterns of vertical or horizontal stripes. Then, they showed each person a pattern of green horizontal stripes in one eye and red vertical stripes in the other eye. This would induce what is known as the "binocular rivalry" condition where each image would fight for control of perception and would appear to alternate from one to the other. In this experiment, however, the subjects reported seeing the image they had first imagined more often. So, if they had imagined vertical stripes originally, they would report seeing the red vertical stripes predominantly.

The team concluded that mental imagery does have an influence over what is later seen. They also believe that the brain actually processes imagined mental images the same way it handles actual scenes. "More recently, with advances in human brain imaging, we now know that when you imagine something parts of the visual brain do light up and you see activity there," Pearson says. "So there's more and more evidence suggesting that there is a huge overlap between mental imagery and seeing the same thing. Our work shows that not only are imagery and vision related, but imagery directly influences what we see."

So, back to our sports example, if we were able to imagine a large golf hole or a huge baseball, this might affect our actual perception of the real thing and increase our performance. This link has not been tested, but its a step in the right direction. Another open question is the effect that our emotions and confidence have on our perceived task. That hole may look like the Grand Canyon, but the sand trap might look like the Sahara Desert!

ResearchBlogging.org

Witt, J.K. (2008). Putting to a bigger hole: golf performance relates to perceived size. Psychonomic Bulletin & Review, 15

Brains Over Brawn In Sports

Sometimes, during my daily browsing of the Web for news and interesting angles on the sport science world, I get lucky and hit a home run.  I stumbled on this great May 2007 Wired article by Jennifer Kahn, Wayne Gretzky-Style 'Field Sense' May Be Teachable.  It ties together the people and themes of my last three posts, focusing on the concept of perception in sports.


Wayne Gretzky is often held up as the ultimate example of an athlete with average physical stature, who used his cognitive and perceptual skills to beat opponents.  Joining Gretzky in the "brains over brawn" Hall of Fame would be pitcher Greg Maddux, NBA guard Steve Nash and quarterback Joe Montana.  They were all told as teenagers that they didn't have the size to succeed in college or the pros, but they countered this by becoming master students of the game, constantly searching for visual cues that would give them the advantage of a fraction of second or the element of surprise.



Kahn's story focuses on two sport scientists that we have met before.  Peter Vint, sport technologist with the US Olympic team, who I highlighted in the post, Winning Olympic Gold With Sport Science,  comments on this, "In any sport, you come across these players.  They're not always the most physically talented, but they're by far the best. The way they see things that nobody else sees — it can seem almost supernatural. But I'm a scientist, so I want to know how the magic works."  So, Vint and his team continue to search not only for the secret to the magic, but how it can be taught.



Vint acknowledges the work of one of his fellow sport scientists, Damian Farrow, of the Australian Institute for Sport, who was part of the discussion roundtable mentioned in my post, Getting Sport Science Out Of The Lab And Onto The Field.


He is also fascinated with the perceptual abilities of elite athletes.  In his own sport, tennis, he wanted to know how expert players could return serves much better than novice players.  Similar to the research we looked at in an earlier post about tennis, Federer and Nadal Can See the Difference, Farrow designed an experiment that would try to identify the cues that players might need to instinctively estimate the speed and direction of a serve.  He had three groups of players, expert, non-expert but coached, and non-expert/non-coaced novices, wear ear plugs to block out the sound of the ball hitting the racquet as well as occlusion glasses that could block vision with the touch of an assistant's button.  

By changing the point of the serve at which the glasses would go black, and the players would be "blind", he could try to isolate the action of the server that the expert players might be tuned into that the novices were not.  The decisive point was immediately before impact between the racquet and the ball.  Arm and racquet position at that point seemed to let the expert players estimate the direction of the serve more accurately than the novices.


But Vint and Farrow are not satisfied just knowing what an expert knows.  They want to understand how to teach this skill to novices.  From his own competitive tennis playing days, Farrow remembers that if he consciously focused his mind on things like arm position, racquet angle, etc., he would be miss the serve as his reaction time would drop.  He understood that players need to not only learn the cues, but learn them to the point of "automaticity" through implicit learning.  

You may remember our discussion of implicit learning from the post, Teaching Tactics and Techniques in Sports.   Malcolm Gladwell, in his best-selling book, Blink, calls this implicit decision-making ability "thin slicing" and gives examples of how we can often make better decisions in the "blink" of an eye, rather than through long analysis.  Obviously, in sports, when only seconds or sub-seconds are allowed for decisions, this blink must be so well-trained that it is at the sub-conscious level.

For Vint and Farrow, the experiments continue, looking at each sport, but beyond the raw physical and technical skills that need to be taught but often times are the only skills that are taught.   

Understanding the cognitive side of the game will provide the edge when all else is equal.

Getting Sport Science Out Of The Lab And Onto The Field







You are a coach, trying to juggle practice plans, meetings, game prep and player issues while trying to stay focused on the season's goals.  At the end of another long day, you see this in your inbox:

MEMO
To:           All Head Coaches
From:      Athletic Director
Subject:  Monthly Reading List to Keep Up with Current Sport Science Research 
-  Neuromuscular Activation of Triceps Surae Using Muscle Functional MRI and EMG
-  Positive effects of intermittent hypoxia (live high:train low) on exercise performance are not mediated primarily by augmented red cell volume
-  Physiologic Left Ventricular Cavity Dilatation in Elite Athletes
-  The Relationships of Perceived Motivational Climate to Cohesion and Collective Efficacy in Elite Female Teams


Just some light reading before bedtime...  This is an obvious exaggeration (and weak attempt at humor) of the gap between sport science researchers and practitioners.  While those are actual research paper titles from the last few years under the heading of "sport science", the intended audience was most likely not coaches or athletes, but rather fellow academic peers.  The real question is whether the important conclusions and knowledge captured in all of this research is ever actually used to improve athletic performance?  How can a coach or athlete understand, combine and transfer this information into their game?

David Bishop of the Faculty of Exercise and Sport Science at the University of Verona has been looking at this issue for several years.  It started with a roundtable discussion he had at the 2006 Congress of the Australian Association for Exercise and Sports Science with several academic sport scientists (see: Sports-Science Roundtable: Does Sports-Science Research Influence Practice? )  He asked very direct questions regarding the definition of sport science and whether the research always needs to be "applied" versus establishing a "basic" foundation.  The most intriguing question was whether there already is ample research that could applied, but it suffered from the lack of a good translator to interpret and communicate to the potential users - coaches and athletes.  The panel agreed that was the missing piece, as most academic researchers just don't have the time to deliver all of their findings directly to the field.

In a follow-up to this discussion, Bishop recently published his proposed solution titled, "An Applied Research Model for the Sport Sciences" in Sports Medicine (see citation below).  In it, he calls for a new framework for researchers to follow when designing their studies so that there is always a focus on how the results will directly improve athletic performance.  He calls for a greater partnership role between researchers and coaches to map out a useful agenda of real world problems to examine.  He admits that this model, if implemented, will only help increase the potential for applied sport science.  The "middleman" role is still needed to bring this information to the front lines of sports.

The solution for this "gathering place" community seems perfect for Web 2.0 technology.  One specific example is an online community called iStadia.com.  Keith Irving and Rob Robson, two practicing sport science consultants, created the site two years ago to fill this gap.  Today, with over 600 members, iStadia is approaching the type of critical mass that will be necessary to bring all of the stakeholders together.  Of course, as with any online community, the conversations there are only as good as the participants want to make it.  But, with the pressure on coaches to improve and the desire of sport scientists to produce relevant knowledge, there is motivation to make the connection.

Another trend favoring more public awareness of sport science is the additional, recent media attention, especially related to the upcoming Beijing Olympics.  In an earlier post, Winning Olympic Gold With Sport Science, I highlighted a feature article from USA Today.  This month's Fast Company also picks up on this theme with their cover article, Innovation of Olympic Proportions, describing several high-tech equipment innovations that will be used at the Games.  Each article mentions the evolving trust and acceptance of sport science research by coaches and athletes.  When they see actual products, techniques and, most importantly, results come from the research, they cannot deny its value.




ResearchBlogging.org



Bishop, D. (2008). An Applied Research Model for the

Sport Sciences. Sports Medicine, 38(3), 253-263.

Teaching Tactics and Techniques In Sports

You have probably seen both types of teams. Team A: players who are evenly spaced, calling out plays, staying in their positions only to watch them dribble the ball out of bounds, lose the pass, or shoot wildly at the goal. Team B: amazing ball control, skillful shooting and superior quickness, speed and agility but each player is a "do-it-yourselfer" since no one can remember a formation, strategy or position responsibility. Team A knows WHAT to do, but can't execute. Team B knows HOW to do it, but struggles with making good team play decisions. This is part of the ongoing balancing act of a coach. At the youth level, teaching technique first has been the tradition, followed by tactical training later and separately. More recently, there has been research on the efficiency of learning in sports and whether there is a third "mixed" option that yields better performance.


Earlier, we took an initial look at Dr. Joan Vickers' Decision Training model as an introduction to this discussion. In addition, Dr. Markus Raab of the Institute for Movement Sciences and Sport, University of Flensburg, Germany, (now of the Institute of Psychology, German Sport University in Cologne), took a look at four major models of teaching sports skills that agree that technical and tactical skills need to be combined for more effective long-term learning.Each of the four models vary in their treatment of learning along two different dimensions; implicit vs. explicit learning and domain-specific vs. domain-general environments. 


Types of Learning

Imagine two groups of boys playing baseball. The first group has gathered at the local ball diamond at the park with their bats, balls and gloves. No coaches, no parents, no umpires; just a group of friends playing an informal "pick-up" game of baseball. They may play by strict baseball rules, or they may improvise and make their own "home" rules, (no called strikes, no stealing, etc.). In the past, they may have had more formal coaching, but today is unstructured.


The second group is what we see much more often today. A team of players, wearing their practice uniforms are driven by their parents to team practice at a specific location and time to be handed off to the team coaches. The coaches have planned a 90 minute session that includes structured infield practice, then fly ball practice, then batting practice and finally some situational scrimmages. Rules are followed and coaching feedback is high. Both groups learn technical and tactical skills during their afternoon of baseball. They differ in the type of learning they experience.

The first group uses "implicit" learning while the second group uses "explicit" learning. Implicit learning is simply the lack of explicit teaching. It is "accidental" or "incidental" learning that soaks in during the course of our play. There is no coach teaching the first group, but they learn by their own trial and error and internalize the many if-then rules of technical and tactical skills. Explicit learning, on the other hand, is directed instruction from an expert who demonstrates proper technique or explains the tactic and the logic behind it.



An interesting test of whether a specific skill or piece of knowledge has been learned with implicit or explicit methods is to ask the athlete to describe or verbalize the details of the skill or sub-skill. If they cannot verbalize how they know what they know, it was most likely learned through implicit learning. However, if they can explain the team's attacking strategy for this game, for example, that most likely came from an explicit learning session with their coach.



Types of Domains

The other dimension that coaches could use in choosing the best teaching method is along the domain continuum. Some teaching methods work best to teach a skill that is specific to that sport's domain and the level of transferability to another sport is low. These methods are known as domain-specific. For more general skills that can be useful in several related sports, a method can be used known as domain-general.

Why would any coach choose a method that is not specific to their sport? There has been evidence that teaching at a more abstract level, using both implicit and explicit "play" can enhance future, more specific coaching. Also, remember our discussion about kids playing multiple sports.Based on these two dimensions, Dr. Raab looked at and summarized these four teaching models:
  • Teaching Games for Understanding (TGFU)
  • Decision Training (DT)
  • Ball School (Ball)
  • Situation Model of Anticipated Response consequences of Tactical training (SMART)
TGFU

The TGFU approach, (best described by Bunker, D.; Thorpe, R. (1982) A model for the teaching of games in the secondary school, Bulletin of Physical Education, 10, 9–16), is known for involving the athlete early in the "cognition" part of the game and combining it with the technical aspect of the game. Rather than learn "how-to" skills in a vacuum, TGFU argues that an athlete can tie the technical skill with the appropriate time and place to use it and in the context of a real game or a portion of the game.

This method falls into the explicit category of learning, as the purpose of the exercise is explained. However, the exercises themselves stress a more domain-general approach of more generic skills that can be transferred between related sports such as "invasion games" (soccer, football, rugby), "net games" (tennis, volleyball), "striking/fielding games" (baseball, cricket) and "target games" (golf, target shooting). 



Decision Training

The DT method, (best described by Vickers, J. N., Livingston, L. F., Umeris-Bohnert, S. & Holden, D. (1999) Decision training: the effects of complex instruction, variable practice and reduced delayed feedback on the acquisition and transfer of a motor skill, Journal of Sports Sciences, 17, 357–367), uses an explicit learning style but with a domain-specific approach. Please see my earlier post on Decision Training for details of the approach. 


Ball School

The Ball School approach, (best described by Kroger, C. & Roth, K. (1999) Ballschule: ein ABC fur Spielanfanger [Ball school: an ABC for game beginners] (Schorndorf, Hofmann), starts on the other end of both spectrums, in that it teaches generic domain-general skills using implicit learning. It emphasizes that training must be based on ability, playfullness, and skill-based. Matching the games to the group's abilities, while maintaining an unstructured "play" atmosphere will help teach generic skills like "hitting a target" or "avoiding defenders". 



SMART

Dr. Raab's own SMART model, (best described in Raab, M. (2003) Decision making in sports: implicit and explicit learning is affected by complexity of situation, International Journal of Sport and Exercise Psychology, 1, 406–433), blends implicit and explicit learning within a domain-specific environment. The idea is that different sports' environmental complexity may demand either an implicit or explicit learning method. Raab had previously shown that skills learned implicitly work best in sport enviroments with low complexity. Skills learned explicitly will work best in highly complex environments. Complexity is measured by the number of variables in the sport. So, a soccer field has many moving parts, each with its own variables. So, the bottom line is to use the learning strategy that fits the sport's inherent difficulty. So, learning how to choose from many different skill and tactical options would work best if matched with the right domain-specific environment.  



Bottom-Line for Coaches

What does all of this mean for the coach? That there are several different models of instruction and that one size does not fit all situations. Coaches need an arsenal of tools to use based on the specific goals of the training session. In reality, most sports demand both implicit and explicit learning, as well as skills that are specific to one domain, and some that can transfer across several sport domains. Flexibility in the approach taken goes back to the evidence based coaching example we gave last time. Keeping an open mind about coaching methods and options will produce better prepared athletes.



ResearchBlogging.org


(2007). Discussion. Physical Education & Sport Pedagogy, 12(1), 1-22. DOI: 10.1080/17408980601060184

Winning Olympic Gold With Sport Science

Its something that every coach and every athlete of every sport is searching for... the EDGE. That one training tip, equipment improvement, mental preparation or tactical insight that will tip the game towards them. The body of knowledge that exists today in each sport is assumed, with each competitor expected to at least be aware of the history, beliefs and traditions of their individual sport. But, if each team is starting with the same set of information then the team that takes the next step by applying new research and ideas will capture the edge.

To me, that is what sport science is all about. The goal is to improve sports performance by imagining, analyzing, experimenting, testing, documenting and training new methods to coaches and athletes.

You might have seen a great article in the 6/23 edition of USA Today; "In hunt for Olympic gold, techies are major players" by Jodi Upton. We meet Peter Vint, a "sport technologist" in the Performance Technology Division of the US Olympic Training Center in Colorado Springs, CO, whose job it is to find ways to win more gold medals. From the article; "The next revolution, Vint says, is breaking down the last secrets of elite athletes: response time, how they read the field and other players — everything that goes into the vision, perception and split-second decision-making of an athlete. 'We've always looked at that as mysterious, something that's unmeasurable and innate,' Vint says. 'But we think it can be taught.'"

Interestingly, Vint cites another pioneer in evidence-based sports coaching, Oakland A's general manager, Billy Beane. "We're becoming progressively more data-driven," Vint says of the center's training efforts. "We are trying to pursue what Sabermetrics and Billy Beane did for baseball, identifying factors that can truly influence performance." The radical concept that Beane created, as documented in the bestseller, "Moneyball" by Michael Lewis, is to stop searching for "the edge" in all the same places that everyone else is looking. Instead, he started from scratch with new logic about the objectives of the game of baseball itself and built metrics that gave new insight into the types of players and skill sets that he should acquire for his team.

If sport science is going to thrive and be accepted, it faces the challenge of inertia. The ideas and techniques that are the product of sport science can also be captured in the phrase, "evidence based coaching". Just as evidence based medicine has slowly found its place in the physician's exam room, the coaching profession is just beginning to trust the research. Traditionally, "belief based coaching" has been the philosophy favored in the clubhouse. Training drills, tactical plans, player selection and player development has been guided by ideas and concepts that have been handed down from one generation of coaches to the next. Most of these beliefs are valid and have been proven on the field through many years of trial and error. Subjecting these beliefs to scientific research may not produce conclusions any different than what coaching lore tells us. But, today's coaches and athletes see the competition creeping closer to them in all aspects, so they are now willing to at least listen to the scientists. Beane likens it to financial analysis and the stock market. The assumption is that all information is known by all. But, if someone can find a ratio or a statistic or make an industry insight that no one has considered, then they own the competitive advantage; at least until this new information is made public.

It takes time, though, to amass enough data to convince a head coach to change years of habits for the unknown. Reputations and championships are on the line, so the changes sometimes need to be implemented slowly. Vint describes the gradual process of converting U.S. hurdler Terrence Trammell and his coach to some of his ideas. "The relationship between the athletes and sports scientist is critical," Vint says. "But (for some), biomechanics has not yet provided useful enough suggestions."

There still is debate on evidence based coaching vs. belief based coaching. Here are two opposing opinions; evidence-based: "The Second Law of Thermodynamics" by Brent S. Rushall of San Diego State University
and belief-based: "Evidence Based vs. Belief Based Coaching" by Richard Todd of Webball.com. If you have a few minutes, please read each opinion and offer your take on this. After considering these opinions, Robert Robson, sport psychologist and management consultant, stated, "Sports coaching should absolutely be evidence-based, but any argument that places the sole source of evidence in the realm of the scientific method is, I would argue, naive and lacking in an understanding of the philosophical underpinnings of science."

Looking forward, I will dig a little deeper into this topic in the next week, so please check back or subscribe to Sports Are 80 Percent Mental.

Single Sport Kids - When To Specialize

So, your grade school son or daughter is a good athlete, playing multiple sports and having fun at all of them. Then, you hear the usual warning, either from coaches or other parents; "If you want your daughter to go anywhere in this sport, then its time to let the other sports go and commit her full-time to this one." The logic sounds reasonable. The more time spent on one sport, the better she will be at that sport, right? Well, when we look at the three pillars of our Sports Cognition Framework, motor skill competence, decision making ability, and positive mental state, the question becomes whether any of these would benefit from playing multiple sports, at least in the early years of an athlete (ages 3-12)? It seems obvious that specific technical motor skills, (i.e. soccer free kicks, baseball bunting, basketball free throws) need plenty of practice and that learning the skill of shooting free throws will not directly make you a better bunter. On the other end, learning how to maintain confidence, increase your focus, and manage your emotions are skills that should easily transfer from one sport to another. That leaves the development of tactical decision making ability as the unknown variable. Will a young athlete learn more about field tactics, positional play and pattern recognition from playing only their chosen sport or from playing multiple related sports?

Researchers at the University of Queensland, Australia learned from previous studies that for national team caliber players there is a correlation between the breadth of sport experiences they had as a child and the level of expertise they now have in a single sport. In fact, these studies show that there is an inverse relation between the amount of multi-sport exposure time and the additional sport-specific training to reach expert status. In plain English, the athletes that played several different (but related) sports as a child, were able to reach national "expert" level status faster than those that focused only one sport in grade school . Bruce Abernethy, Joseph Baker and Jean Cote designed an experiment to observe and measure if there was indeed a transfer of pattern recognition ability between related sports (i.e. team sports based on putting an object in a goal; hockey, soccer, basketball, etc.)

They recruited two group of athletes; nationally recognized experts in each of three sports (netball, basketball and field hockey) who had broad sports experiences as children and experienced but not expert level players in the same sports whose grade school sports exposure was much more limited (single sport athletes). (For those unfamiliar with netball, it is basically basketball with no backboards and few different rules.) The experiment showed each group a video segment of an actual game in each of the sports. When the segment ended the groups were asked to map out the positions and directions of each of the players on the field, first offense and then defense, as best they could remember from the video clip. The non-expert players were the control group, while the expert players were the experimental groups. First, all players were shown a netball clip and asked to respond. Second, all were shown a basketball clip and finally the hockey clip. The expectation of the researchers was that the netball players would score the highest after watching the netball clip (no surprise there), but also that the expert players of the other two sports would score higher than the non-expert players. The reasoning behind their theory was that since the expert players were exposed to many different sports as a child, there might be a significant transfer effect between sports in pattern recognition, and that this extra ability would serve them well in their chosen sport.

The results were as predicted. For each sport's test, the experts in that sport scored the highest, followed by the experts in the other sports, with the non-experts scoring the poorest in each sport. Their conclusion was that there was some generic learning of pattern recognition in team sports that was transferable. The takeaway from this study is that there is benefit to having kids play multiple sports and that this may shorten the time and training needed to excel in a single sport in the future.

So, go ahead and let your kids play as many sports as they want. Resist the temptation to "overtrain" in one sport too soon. Playing several sports certainly will not hurt their future development and will most likely give them time to find their true talents and their favorite sport.

ResearchBlogging.org
Source:
Abernethy, B., Baker, J., Côté, J. (2005). Transfer of pattern recall skills may contribute to the development of sport expertise. Applied Cognitive Psychology, 19(6), 705-718. DOI: 10.1002/acp.1102

Federer and Nadal Can See the Difference









Watching Roger Federer and Rafael Nadal battle it out in the French Open final and now again in the Wimbledon final, I started thinking more about the interceptive timing task requirements of each of their visuomotor systems... yeah, right. C'mon, I just needed a good opening line for this post.


However, other than a 120 mph tennis serve, take a second to think about all of the different sports that send an object flying at you at very high speeds that you not only have to see, but also estimate the speed of the object, the movement of the object and what you want to do with the object once it gets to you.



Some examples are:
- a hockey puck at a goalie (70-100 mph)
- a baseball pitch at a batter (70-100 mph)
- a soccer ball kicked at a keeper (60-90 mph)


Previously, we took a look at this in baseball and in soccer and also discussed the different types of visual skills in sports. There, we broke it down into three categories:

- Targeting tasks
- Interceptive timing tasks
- Tactical decision making tasks

The second category, interceptive timing tasks, deals with the examples above; stuff coming at you fast and you need to react. There are three levels of response that take an increasing level of brainpower.

First, there is a basic reaction, also known as optometric reaction. In other words, "see it and get out of the way". Next, there is a perceptual reaction, meaning you actually can identify the object coming at you and can put it in some context (i.e. that is a tennis ball coming at you and not a bird swooping out of the sky).

Finally, there is a cognitive reaction, meaning you know what is coming at you and you have a plan of what to do with it (i.e. return the ball with top-spin down the right line). This cognitive skill is usually sport-specific and learned over years of tactical training. Obviously, for professional tennis players, they are at the expert cognitive stage and have a plan for most shots. Federer's problem was that Nadal had better plans.

But, in order to reach that cognitive stage, they first need to have excellent optometric and perceptual skills. Can those skills be trained? Or are the best tennis players born with naturally better abilities? Did their training make them better tennis players or are they better players because of some natural skills?


Leila Overney and her team at the Brain Mind Institute of Ecole Polytechnique Federale de Lausanne (EPFL) recently studied whether expert tennis players have better visual perception abilities than other athletes and non-tennis players. Typically, motor skill research compares experts to non-experts and tries to deduce what the experts are doing differently to excel.

In this study, an additional category was added. Overney wanted to see if the perceptual skills of the tennis players were significantly more advanced than athletes of a similar fitness level, (in this case triathletes), to eliminate the variable of "fitness", and also more advanced than novice tennis players (the typical comparison). To eliminate the cognitive knowledge difference between the groups, she used seven non-sport specific visual tests. Please see the actual study for details of all the tests.

The bottom line of the results was that certain motion detection and speed discrimination skills were better in the tennis players (in other words, being able to track a ball coming at you and its movement side to side).


So, the expert tennis players were better at tracking balls coming at them than triathletes and non-tennis players.... seems pretty obvious(!) But, these results are a first step to answering the question of "can these skills be trained"? We see that there is, indeed, a difference in ability level between expert players and athletes that are in similar shape and competitive spirit. Now, the question becomes, "how did these tennis players acquire a higher level of perception skill"? Was it "nature or nurture", "genetically gifted or trained through practice"?


Source: Overney, L.S., Blanke, O., Herzog, M.H., Burr, D.C. (2008). Enhanced Temporal but Not Attentional Processing in Expert Tennis Players. PLoS ONE, 3(6), e2380. DOI: 10.1371/journal.pone.0002380

The Coach's Curse - Mental Mistakes



"Donadoni rues Italian 'mistakes' against Dutch"

"Mental errors cost Demons in regional quarterfinal"

"Mental mistakes doom Rays in loss to Cardinals"

 

Every day, there is always a new variety of stories linked to the phrase, "mental mistakes".  Either the writer recaps a game, calling out the mistakes or a coach or player claims that mistakes were made. It has become sort of a throwaway phrase, "...we made a lot of mental mistakes out there today, that we need to avoid if we want to get to the playoffs..." The million dollar question then is HOW to reduce these mental mistakes. And, to answer that, we need to define WHAT is a mental mistake?

In a previous post, I introduced the "Sports Cognition Framework", which is a trio of elements needed for success in sports. These three elements are:

- decision-making ability (knowing what to do)

- motor skill competence (being physically able to do it)

- po
sitive mental state (being motivated and confident to do it)

Most of the time, a mental mistake is thought of as a breakdown of decision-making ability. The center fielder throws to the wrong base, the tight end runs the wrong route, or the defender forgets to mark his man, etc. These scenarios describe poor decisions or even memory lapses during the stress of the game. They are not necessarily the lack of skill to execute a play or the lack of confidence or motivation to want to do the right thing. It is a recognition, in hindsight, that the best option was not chosen. In addition to glaring nega
tive plays, there are also missed opportunities on the field (i.e. taking a contested shot on goal, instead of passing to the open teammate).

So, back to the payoff question: HOW do we reduce mental mistakes and poor decisions? Just as we practice physical skills to improve our ability to throw, catch, shoot, run, etc., we need to practice making decisions using a a training system that directly exposes the athlete to these scenarios. Dr. Joan Vickers, who we met during our discussion of the Quiet Eye, has created a new system which she calls the "Decision-Training Model", and is the focus of the second half of her book, "Perception, Cognition, and Decision Training". As opposed to traditional training methods that separate skill training from tactical decision making training, the Decision-Training model (D-T) forces the athlete to couple her skill learning with the appropriate tactical awareness of when to use it.

So, instead of an "easy-first" breakdown of a skill, and then build it up step by step, D-T begins with a "hard-first" approach putting the "technique within tactics" demanding a higher cognitive effort right up front. The theory behind D-T is that the coach is not on the field with the player during competition, so the player must learn to rely on their own blended combination of skill and game awareness. Research from Vickers and others shows that D-T provides a more lasting retention of knowledge, while more traditional bottom-up training with heavy coach feedback delivers a stronger short-term performance gain, but that success in practice does not often translate later in games. Practice and training need to mirror game situations as often and as completely as the real thing.

There are three major steps to Decision-Training (p. 167):

1. Identify a decision the athlete has to make in a game, using one of the seven cognitive skills (anticipation, attention, focus/concentration, pattern recognition, memory, problem solving and decision making)

2. Create a drill(s) that trains that decision using one of the seven cognitive triggers (object cues, location cues, Quiet Eye, reaction-time cues, memory cues, kinesthetic cues, self-coaching cues)

3. Use one or more of the seven decision tools in the design of the drill (variable practice, random practice, bandwidth feedback, questioning, video feedback, hard-first instruction, external focus of instruction)

This post was just to serve as an introduction to D-T. Dr. Vickers and her team at University of Calgary offer full courses for coaches to learn D-T and apply it in their sport. Combined with the visual cues of the playing environment provided by the Quiet Eye gaze control, D-T seems to offer a better tactical training option for coaches and athletes. Coming up, we will continue the discussion of decision-making in sports with a look at some other current research. Please give me your thoughts on D-T and the whole topic of mental mistakes!