Hockey Hits Are Hurting More


One painful lesson every National Hockey League rookie learns is to keep your head up when skating through the neutral zone. If you don't, you will not see the 4700 joules of kinetic energy skating at you with bad intentions.
During an October 25th game, Brandon Sutter, rookie center for the Carolina Hurricanes, never saw Doug Weight, veteran center of the New York Islanders, sizing him up for a hit that resulted in a concussion and an overnight stay in the hospital.  Hockey purists will say that it was a "clean hit" and Weight was not penalized.

Six days before that incident, the Phoenix Coyotes' Kurt Sauer smashed Andrei Kostitsyn of the Montreal Canadiens into the sideboards. Kostitsyn had to be stretchered off of the ice and missed two weeks of games with his concussion. Sauer skated away unhurt and unpenalized. See video here.

Big hits have always been part of hockey, but the price paid in injuries is on the rise. According to data released last month at the National Academy of Neuropsychology's Sports Concussion Symposium in New York, 759 NHL players have been diagnosed with a concussion since 1997. For the ten seasons studied, that works out to about 76 players per season and 31 concussions per 1,000 hockey games. During the 2006-07 season, that resulted in 760 games missed by those injured players, an increase of 41% from 2005-06. Researchers have found two reasons for the jump in severity, the physics of motion and the ever-expanding hockey player.
In his book, The Physics of Hockey, Alain Haché, professor of physics at Canada's University of Moncton, aligns the concepts of energy, momentum and the force of impact to explain the power of mid-ice and board collisions.
As a player skates from a stop to full speed, his mass accelerates at an increasing velocity. The work his muscles contribute is transferred into kinetic energy which can and will be transferred or dissipated when the player stops, either through heat from the friction of his skates on the ice, or through a transfer of energy to whatever he collides with, either the boards or another player.
The formula for kinetic energy, K = (1/2)mass x velocity2, represents the greater impact that a skater's speed (velocity) has on the energy produced. It is this speed that makes hockey a more dangerous sport than other contact sports, like football, where average player sizes are larger but they are moving at slower speeds (an average of 23 mph for hockey players in full stride compared to about 16 mph for an average running back in the open field).
So, when two players collide, where does all of that kinetic energy go? First, let's look at two billiard balls, with the exact same mass, shape and rigid structure. When two balls collide on the table, we can ignore the mass variable and just look at velocity. If the ball in motion hits another ball that is stationary, then the ball at rest will receive more kinetic energy from the moving ball so that the total energy is conserved. This will send the stationary ball rolling across the table while the first ball almost comes to a stop as it has transferred almost all of its stored energy.
Unfortunately, when human bodies collide, they don't just bounce off of each other. This "inelastic" collision results in the transfer of kinetic energy being absorbed by bones, tissues and organs. The player with the least stored energy will suffer the most damage from the hit, especially if that player has less "body cushion" to absorb the impact.
To calculate your own real world energy loss scenario, visit the Exploratorium's "Science of Hockey" calculator. For both Sutter and Kostitsyn, they received checks from players who outweighed them by 20 pounds and were skating faster.
The average mass and acceleration variables are also growing as today's NHL players are getting bigger and faster. In a study released in September, Art Quinney and colleagues at the University of Alberta tracked the physiological changes of a single NHL team over 26 years, representing 703 players. Not surprisingly, they found that defensemen are now taller and heavier with higher aerobic capacity while forwards were younger and faster. Goaltenders were actually smaller with less body mass but had better flexibility. However, the increase in physical size and fitness did not correspond with team success on the ice. But the checks sure hurt a lot more now. 
Please visit my other articles on Livescience.com

Wait Until After The Season To Fire The Coach



Your high school guidance counselor should have steered you away from these three career paths: hand grenade tester, freezer salesman in Siberia and head coach of just about any sport. The longevity and success potential of each is limited.

Just halfway through the current 16-game NFL season, three coaches, Lane Kiffin (Oakland Raiders), Scott Linehan (St. Louis Rams) and Mike Nolan (San Francisco 49ers), have been asked to "pursue other opportunities."

Add to that two NHL coaches, Denis Savard (Chicago Blackhawks), who only made it to the fourth game of this year's 82-game schedule and now Barry Melrose, who was just fired after only 16 games. On the other end of the season, Ned Yost (Milwaukee Brewers), led his baseball team through 150 regular season games only to be fired with 12 games left in the season, even though the Brewers were still battling for a playoff spot.

Of course, we all should be so lucky to be bought out of our multi-million dollar contracts, so that we could contemplate our vocational options from a Caribbean beach. But do all of these pink slips and "interim" coaches help a team?

Since 1970, no NFL head coach hired in midseason has even made it to the playoffs, never mind the Super Bowl. And, while the Brewers did make the postseason this year, their record was only 7-5 in those last 12 games and then they lost in the divisional series, four games to one.

Yet team owners continue to panic and react rather than stick with the coach that, at one time, they felt was the man for the job. On the off chance that these owners enjoy reading academic research papers, two recent studies could confirm for them that reaching for the hook during midseason is not supported by results.

Economics professors from the Universita della Calabria, Maria De Paola and Vincenzo Scoppa, looked at the top Italian soccer league, Serie A, over five seasons from 2003-04 to 2007-08. Serie A is one of the most well-known leagues in the world, and an average of 41 percent of its 20 teams changed coaches during any given year in this five-year dataset. The researchers measured team performance before and after each of the 40 changes, using team points (3 for a win, 1 for a tie, and 0 for a loss), goals scored, goals against and their difference, known as goal differential.  The results showed no statistically significant improvements in team performance.

For several reasons that De Paola and Scoppa point out, this makes logical sense. So much of a team's success is determined when they first step on the field at the beginning of the season. The quality of the players on the roster, the tactical system that is in place and the influence of the fans and local media are variables that a new coach may not able to affect.

The game schedule can also play a role. If a team faces a string of tough opponents early in the season, the old coach may be unfairly compared to the new coach who has an easier schedule after the change. Also, over the course of a season, each team's record will statistically gather around its expected performance level. Since most coaching changes are made after a run of poor results, the new coach may benefit from a simple "regression to the mean" by enjoying a string of good results that may have nothing to do with the coach.

Change the sport and the league and the results are still the same. Three researchers led by Leif Arnesson at Mid Sweden University collected data from 30 years of the Elitserien or Swedish Elite League, the NHL of Sweden, to measure the impact of changing head coaches midseason.

"The results of our study indicate rather clearly that it was a mistake to replace the coach in all of these cases," says Arnesson. "If you're thinking about getting a new coach, you should at least avoid making your move while the season is under way. A word of advice to those who are in charge of recruiting coaches is therefore: 'Don't replace the coach, at any rate if you have a good coach, if you're in the middle of the season, or if the team is in trouble."

While the old saying, "you can't fire all the players so you might as well fire the coach", seems like the quick fix to a underperforming season, owners and fans should probably be patient.  At the end of the season, however, its a "whole new ball game" so we can "get 'em next year"!

Please visit my other articles on Livescience.com

Rotate It Like Ronaldo?





"Rotate it like Ronaldo" just doesn't have the same ring to it as "Bend it like Beckham", but the curving free kick is still one of the most exciting plays in soccer/football. Starting with Rivelino in the 1970 World Cup and on to the specialists of today, more players know how to do it and understand the basic physics behind it, but very few can perfect it. But, when it does happen, by chance or skill, it is the highlight of the game.



But let's take a look at this from the other side, through the eyes of the goalkeeper. Obviously, its their job to anticipate where the free kick is going and get to the spot before the ball crosses the line. He sets up his wall to, hopefully, narrow the width of the target, but he knows some players are capable of bending the ball around or over the wall towards the near post. If you watch highlights of free kick goals, you often see keepers flat-footed, just watching the ball go into the top corner. Did they guess wrong and then were not able to react? Did they guess right but misjudged the flight trajectory of the ball. How much did the sidespin or "bend" affect their perception of the exact spot where the ball will cross the line? To get an idea of the effect of spin, here's a compilation of Beckham's best free kick goals (there's a 15 second intro, then the highlights) :







Researchers at Queen's University Belfast and the University of the Mediterranean in France tried to figure this out in this paper. They wanted to compare the abilities of expert field players and expert goalkeepers to accurately predict if a free kick would result in an on-target goal or off-target non-goal. First, a bit about why the ball "bends". We can thank what's called the "Magnus Force" named after the 19th-century German physicist Gustav Magnus. As seen in the diagram below, as the ball spins counter clockwise (for a right-footed player using his instep and kicking the ball on the right side), the air pressure on the left side of the ball is lower as the spin is in the same direction as the oncoming air flow. On the right side of the ball, the spin is in the opposite direction of the air flow, building higher pressure. The ball will follow the path of least resistance, or pressure, and "bend" or curve from right to left. The speed of the spin and the velocity of the shot will determine the amount of bend. For a clockwise spin, the ball bends from left to right.







The researchers showed the players three different types of simulated kicks, a kick bent to the right, a kick bent to the left and a kick with no spin at all. They showed the players these simulations with virtual reality headsets and computer controlled "kicks" and "balls" which they could vary in flight with different programming. The balls would disappear from view at distances of 10 and 12.5 meters from the goal. The reasoning is that this cutoff would correspond with the deadline for reaction time to make a save on the ball. In other words, if the keeper does not correctly guess the final trajectory and position of the ball by this point, he most likely will not be able to physically get to the ball and make the save.







The results showed that both the players and the keepers, (all 20 were expert players from elite clubs like AC Milan, Marseille, Bayer Leverkusen, Schalke 04), were able to correctly predict the result of the kicks with no spin added. However, as 600 RPM spin, either clockwise or counter-clockwise, was added to the ball, the players success declined significantly. Interestingly, the keepers did no better, statistically, then the field players. The researchers conclusion was that the players used the "current heading direction" of the ball to predict the final result, rather than factoring the future affect of the acceleration and change in trajectory caused by the spin.



Just as we saw in the Baseball Hitting post, our human perception skill in tracking flying objects, especially those that are spinning and changing direction, are not perfect. If we understand the physics of the spinning ball, we can better guess at its path, but the pitcher or the free kick taker doesn't usually offer this information beforehand!



Craig, C.M., Berton, E., Rao, G., Fernandez, L., Bootsma, R.J. (2006). Judging where a ball will go: the case of curved free kicks in football. Naturwissenschaften, 93(2), 97-101. DOI: 10.1007/s00114-005-0071-0

Baseball Brains - Fielding Into The World Series

With the crack of the bat, the ball sails deep into the outfield. The center-fielder starts his run back and to the right, trying to keep his eyes on the ball through its flight path. His pace quickens initially, then slows down as the ball approaches. He arrives just in time to make the catch. What just happened? How did he know where to run and at what speed so that he and the ball intersected at the same exact spot on the field. Why didn't he sprint to the landing spot and then wait for the ball to drop, instead of his controlled speed to arrive just when the ball did? What visual cues did he use to track the ball's flight?  Did Willie Mays make the most famous catch in baseball history because he is one of the greatest players of all-time with years of practice? Maybe, but now take a look at this "Web Gems" highlight video of 12 and 13 year-olds from last year's Little League World Series:

Just like we learned in pitching and hitting, fielding requires extensive mental abilities involving eyes, brain, and body movements to accomplish the task. Some physical skills, such as speed, do play a part in catching, but its the calculations and estimating that our brain has to compute that we often take for granted. The fact that fielders are not perfect in this skill, (there are dropped fly balls, or bad judgments of ball flight), begs the question of how to improve? As we saw with pitching and hitting (and most sports skills), practice does improve performance. But, if we understand what our brains are trying to accomplish, we can hopefully design more productive training routines to use in practice.

Once more, we turn to Mike Stadler, associate professor of psychology at University of Missouri, who provides a great overview of current fielding research in his book, "The Psychology of Baseball".

One organization that does not take this skill for granted is NASA. The interception of a ballistic object in mid-flight can describe a left fielder's job or an anti-missile defense system or how a pilot maneuvers a spacecraft through a three dimensional space. In fact, Michael McBeath , a former post doctoral fellow at the NASA Ames Research Center, (now an associate professor at Arizona State University), has been studying fly ball catching since 1995, beginning with his research study, "How baseball outfielders determine where to run to catch fly ball". 

His team developed a rocket-science like theory named Linear Optical Trajectory to describe the process that a fielder uses to follow the path of a batted ball. LOT says the fielder will adjust his movement towards the ball so that its trajectory follows a straight line through his field of vision. Rather than compute the landing point of the ball, racing to that spot and waiting, the fielder uses the information provided by the path of the ball to constantly adjust his path so that they intersect at the right time and place.

The LOT theory is an evolution from an earlier theory called Optical Acceleration Cancellation (OAC) that had the same idea but only explained the fielder's tracking behavior in the vertical dimension. In other words, as the ball leaves the bat the fielder watches the ball rise in his field of vision. If he were to stand still and the ball was hit hard enough to land behind him, his eyes would track the ball up and over his head, or at a 90 degree angle. If the ball landed in front of him, he would see the ball rise and fall but his viewing angle may not rise above 45 degrees. LOT and OAC argue that the fielder repositions himself throughout the flight of the ball to keep this viewing angle between 0 and 90 degrees. If its rising too fast, he needs to turn and run backwards. If the viewing angle is low, then the fielder needs to move forward so that the ball doesn't land in front of him. He can't always make to the landing spot in time, but keeping the ball at about a 45 degree angle by moving will help ensure that he gets there in time. While OAC explained balls hit directly at a fielder, LOT helps add the side-to-side dimension, as in our example of above of a ball hit to the right of the fielder.  More recently, McBeath has successfully defended his LOT theory here and here.

The OAC and LOT theories do agree on a fundamental cognitive science debate. There are two theories of how we perceive the world and then react to it. First, the Information Processing (IP) theory likens our brain to a computer in that we have inputs, our senses that gather information about the world, a memory system that stores all of our past experiences and lessons learned, and a "CPU" or main processor that combines our input with our memory and computes the best answer for the given problem. So, IP would say that the fielder sees the fly ball and offers it to the brain as input, the brain then pulls from memory all of the hundreds or thousands of fly ball flight paths that have been experienced, and then computes the best path to the ball's landing point based on what it has "learned" through practice. McBeath's research and observations of fielders has shown that the processing time to accomplish this task would be too great for the player to react.

OAC and LOT subscribe to the alternate theory of human perception, Ecological Psychology (EP). EP eliminates the call to memory from the processing and argues that the fielder observes the flight path of the ball and can react using the angle monitoring system. This is still up for debate as the IPers would argue "learned facts" like what pitch was thrown, how a certain batter hits those pitches, how the prevailing wind will affect the ball, etc. And, with EP, how can the skill differences between a young ballplayer and an experienced major leaguer be accounted for? What is the point of practice, if the trials and errors are not stored/accessed in memory?

Of course, we haven't mentioned ground balls and their behavior, due to the lack of research out there. The reaction time for a third baseman to snare a hot one-hopper down the line is much shorter. This would also argue in favor of EP, but what other systems are involved?

Arguing about which theory explains a fielder's actions is only productive if we can apply the research to create better drills and practices for our players. The LOT theory seems to be  getting there as an explanation, but there is still debate over EP vs. IP . So many sport skills rely on some of these foundations, that this type of research will continue to be relevant.  As with pitching and hitting, fielding seems to improve with practice.

And then there's the ultimate catch of all-time, that baseball fans have long been buzzing about.  Your reward for getting to the end of this article is this little piece of history...




You were looking for Willie Mays and "The Catch", weren't you?  This ball girl would own the best all-time fielding achievement... if it were real.  But no, just another digital editing marvel.  This was going to be a commercial for Gatorade, then it was put on the shelf.  After it was leaked onto YouTube, the video hoax became a viral hit.  So much so, that Gatorade left it on YouTube and did make a commercial out of it for the 2008 All-Star game.  But, you don't need to tell your Little Leaguers.  Let them dream...

Baseball Brains - Hitting Into The World Series

Ted Williams, arguably the greatest baseball hitter of all-time, once said, "I think without question the hardest single thing to do in sport is to hit a baseball". Williams was the last major league player to hit .400 for an entire season and that was back in 1941, 67 years ago! In the 2008 Major League Baseball season that just ended, the league batting average for all players was .264, while the strikeout percentage was just under 20%. So, in ten average at-bats, a professional ballplayer, paid millions of dollars per year, gets a hit less than 3 times but fails to even put the ball in play 2 times. So, why is hitting a baseball so difficult? What visual, cognitive and motor skills do we need to make contact with an object moving at 70-100 mph?

In the second of three posts in the Baseball Brains series, we'll take a quick look at some of the theory behind this complicated skill. Once again, we turn to Professor Mike Stadler and his book "The Psychology of Baseball" for the answers.  First, here's the "Splendid Splinter" in action:

A key concept of pitching and hitting in baseball was summed up long ago by Hall of Fame pitcher Warren Spahn, when he said, “Hitting is timing. Pitching is upsetting timing.” To sync up the swing of the bat with the exact time and location of the ball's arrival is the challenge that each hitter faces. If the intersection is off by even tenths of a second, the ball will be missed. Just as pitchers need to manage their targeting, the hitter must master the same two dimensions, horizontal and vertical. The aim of the pitch will affect the horizontal dimension while the speed of the pitch will affect the vertical dimension. The hitter's job is to time the arrival of the pitch based on the estimated speed of the ball while determining where, horizontally, it will cross the plate. The shape of the bat helps the batter in the horizontal space as its length compensates for more error, right to left. However, the narrow 3-4" barrel does not cover alot of vertical ground, forcing the hitter to be more accurate judging the vertical height of a pitch than the horizontal location. So, if a pitcher can vary the speed of his pitches, the hitter will have a harder time judging the vertical distance that the ball will drop as it arrives, and swing either over the top or under the ball.

A common coach's tip to hitters is to "keep your eye on the ball" or "watch the ball hit the bat". As Stadler points out, doing both of these things is nearly impossible due to the concept known as "angular velocity". Imagine you are standing on the side of freeway with cars coming towards you. Off in the distance, you are able to watch the cars approaching your position with re
lative ease, as they seem to be moving at a slower speed. As the cars come closer and pass about a 45 degree angle and then zoom past your position, they seem to "speed up" and you have to turn your eyes/head quickly to watch them. While the car is going at a constant speed, its angular velocity increases making it difficult to track.

This same concept applies to the hitter. As the graphic above shows (click to enlarge), the first few feet that a baseball travels when it leaves a pitcher's hand is the most important to the hitter, as the ball can be tracked by the hitter's eyes. As the ball approaches past a 45 degree angle, it is more difficult to "keep your eye on the ball" as your eyes need to shift through many more degrees of movement. Research reported by Stadler shows that hitters cannot watch the entire flight of the ball, so they employ two tactics.

First, they might follow the path of the ball for 70-80% of its flight, but then their eyes can't keep up and they estimate or extrapolate the remaining path and make a guess as to where they need to swing to have the bat meet the ball. In this case, they don't actually "see" the bat hit the ball. Second, they might follow the initial flight of the ball, estimate its path, then shift their eyes to the anticipated point where the ball crosses the plate to, hopefully, see their bat hit the ball. This inability to see the entire flight of the ball to contact point is what gives the pitcher the opportunity to fool the batter with the speed of the pitch. If a hitter is thinking "fast ball", their brain will be biased towards completing the estimated path across the plate at a higher elevation and they will aim their swing there. If the pitcher actually throws a curve or change-up, the speed will be slower and the path of the ball will result in a lower elevation when it crosses the plate, thus fooling the hitter.

To demonstrate the effect of reaction time for the batter, FSN Sport Science compared hitting a 95 mph baseball at 60' 6" versus a 70 mph softball pitched from 43' away.  The reaction time for the hitter went from .395 seconds to .350 seconds, making it actually harder to hit.  That's not all that makes it difficult.  Take a look:


As in pitching, the eyes and brain determine much of the success for hitters. The same concepts apply to hitting any moving object in sports; tennis, hockey, soccer, etc. Over time, repeated practice may be the only way to achieve the type of reaction speed that is necessary, but even for athletes who have spent their whole lives swinging a bat, there seems to be human limitation to success. Tracking a moving object through space also applies to catching a ball, which we'll look at next time.

Baseball Brains - Pitching Into The World Series




With the MLB League Championship Series' beginning this week, Twenty-six teams are wondering what it takes to reach the "final four" of baseball which leads to the World Series. The Red Sox, Rays, Phillies and Dodgers understand its not just money and luck. Over 162 games, it usually comes down to the fundamentals of baseball: pitching, hitting and catching. That sounds simple enough. So, why can't everyone execute those skills consistently? Why do pitchers struggle with their control? Why do batters strike out? Why do fielders commit errors? It turns out Yogi Berra was right when he said, "Baseball is 90% mental, and the other half is physical." In this three part series, each skill will be broken down into its cognitive sub-tasks and you may be surprised at the complexity that such a simple game requires of our brains.

First up, pitching or even throwing a baseball seems effortless until the pressure is on and the aim goes awry. Pitching a 3" diameter baseball 60 feet, 6 inches over a target that is 8 inches wide requires an accuracy of 1/2 to 1 degree. Throwing it fast, with the pressure of a game situation makes this task one of the hardest in sports. In addition, a fielder throwing to another fielder from 40, 60 or 150 feet away, sometimes off balance or on the run, tests the brain-body connection for accuracy. So, how do we do it? And how can we learn to do it more consistently? In his book, The Psychology of Baseball , Mike Stadler, professor of psychology at the University of Missouri, addresses each of these questions.

There are two dimensions to think about when throwing an object at a target: vertical and horizontal. The vertical dimension is a function of the distance of the throw and the effect of gravity on the object. So the thrower's estimate of distance between himself and the target will determine the accuracy of the throw vertically. Basically, if the distance is underestimated, the required strength of the throw will be underestimated and will lose the battle with gravity, resulting in a throw that will be either too low or will bounce before reaching the target. An example of this is a fast ball which is thrown with more velocity, so will reach its target before gravity has a path-changing effect on it. On the other hand, a curve ball or change-up may seem to curve downward, partly because of the spin put on the ball affecting its aerodynamics, but also because these pitches are thrown with less force, allowing gravity to pull the ball down. In the horizontal dimension, the "right-left" accuracy is related to more to the "aim" of the throw and the ability of the thrower to adjust hand-eye coordination along with finger, arm, shoulder angles and the release of the ball to send the ball in the intended direction.

So, how do we improve accuracy in both dimensions? Prof. Stadler points out that research shows that skill in the vertical/distance estimating dimension is more genetically determined, while skill horizontally can be better improved with practice. Remember those spatial organization tests that we took that show a set of connected blocks in a certain shape and then show you four more sets of conected blocks? The question is which of the four sets could result from rotating the first set of blocks. Research has shown that athletes that are good at these spatial relations tests are also accurate throwers in the vertical dimension. Why? The thought is that those athletes are better able to judge the movement of objects through space and can better estimate distance in 3D space. Pitchers are able to improve this to an extent as the distance to the target is fixed. A fielder, however, starts his throw from many different positions on the field and has more targets (bases and cut-off men) to choose from, making his learning curve a bit longer.

If a throw or pitch is off-target, then what went wrong? Research has shown that
despite all of the combinations of fingers, hand, arm, shoulder and body movements, it seems to all boil down to the timing of the finger release of the ball. In other words, when the pitcher's hand comes forward and the fingers start opening to allow the ball to leave. The timing of this release can vary by hundredths of a second but has significant impact on the accuracy of the throw. But, its also been shown that the throwing action happens so fast, that the brain could not consciously adjust or control that release in real-time. This points to the throwing action being controlled by what psychologists call an automated "motor program" that is created through many repeated practice throws. But, if a "release point" is incorrect, how does a pitcher correct that if they can't do so in real-time? It seems they need to change the embedded program by more practice.

Another component of "off-target" pitching or throwing is the psychological side of a player's mental state/attitude. Stadler identifies research that these motor programs can be called up by the brain by current thoughts. There seems to be "good" programs and "bad" programs, meaning the brain has learned how to throw a strike and learned many programs that will not throw a strike. By "seeding" the recall with positive or negative thoughts, the "strike" program may be run, but so to can the "ball" program. So, if a pitcher thinks to himself, "don't walk this guy", he may be subconsciously calling up the "ball" program and it will result in a pitch called as a ball. So, this is why sports pscyhologists stress the need to "think positively", not just for warm and fuzzy feelings, but the brain may be listening and will instruct your body what to do.



So, assuming Josh Beckett of the Red Sox is getting the ball across the plate, will the Rays hit it? That is the topic for next time when we look at hitting an object that is moving at 97 MPH and reaches you in less than half a second.

The Big Mo' - Momentum In Sports

A player can feel it during a game when they hit a game-changing home run or when they go 0 for 4 at the plate. A team can feel it when they come back from a deficit late in the game or when their lead in the division vanishes. A fan can feel it as their team "catches fire" or goes "as cold as ice". And, play-by-play announcers love to talk about it. 

We know it as the "Big Mo", the "Hot Hand", and being "In The Zone" while the psychologists call it Psychological Momentum. But, does it really exist? Is it just a temporary shift in confidence and mood or does it actually change the outcome of a game or a season? As expected, there are lots of opinions available.

The Oxford Dictionary of Sports Science defines psychological momentum as, "the positive or negative change in cognition, affect, physiology, and behavior caused by an event or series of events that affects either the perceptions of the competitors or, perhaps, the quality of performance and the outcome of the competition. Positive momentum is associated with periods of competition, such as a winning streak, in which everything seems to ‘go right’ for the competitors. In contrast, negative momentum is associated with periods, such as a losing streak, when everything seems to ‘go wrong’." 


The interesting phrase in this definition is that Psychological Momentum (PM) "affects either the perceptions of the competitors or, perhaps, the quality of performance and the outcome of the competition." Most of the analyses on PM focus on the quantitative side to try to prove or disprove PM's affect on individual stats or team wins and losses.

Regarding PM in baseball, a Wall St. Journal article looked at last year's MLB playoffs, only to conclude there was no affect on postseason play coming from team momentum at the end of the regular season. More recently, Another Cubs Blog also looked at momentum into this year's playoffs including opinion from baseball stats guru, Bill James, another PM buster. For basketball, Thomas Gilovich's 1985 research into streaky, "hot hand" NBA shooting is the foundation for most of today's arguments against the existence of PM, or at least its affect on outcomes.

This view that if we can't see it in the numbers, more than would be expected, then PM does not exist may not capture the whole picture. Lee Crust and Mark Nesti have recommended that researchers look at psychological momentum more from the qualitative side. Maybe there are more subjective measures of athlete or team confidence that contribute to success that don't show up in individual stats or account for teams wins and losses. 


As Jeff Greenwald put it in his article, Riding the Wave of Momentum, "The reason momentum is so powerful is because of the heightened sense of confidence it gives us -- the most important aspect of peak performance. There is a term in sport psychology known as self-efficacy, which is simply a player's belief in his/her ability to perform a specific task or shot. Typically, a player’s success depends on this efficacy. During a momentum shift, self-efficacy is very high and players have immediate proof their ability matches the challenge. As stated earlier, they then experience subsequent increases in energy and motivation, and gain a feeling of control. In addition, during a positive momentum shift, a player’s self-image also changes. He/she feels invincible and this takes the "performer self" to a higher level."

There would seem to be three distinct areas of focus for PM; an individual's performance within a game, a team's performance within a game and a team's performance across a series of games. So, what are the relationships between these three scenarios? Does one player's scoring streak or key play lift the team's PM, or does a close, hard-fought team win rally the players' morale and confidence for the next game? 


Seeing the need for a conceptual framework to cover all of these bases, Jim Taylor and Andrew Demick created their Multidimensional Model of Momentum in Sports, which is still the most widely cited model for PM. Their definition of PM, "a positive or negative change in cognition, affect, physiology, and behavior caused by an event or series of events that will result in a commensurate shift in performance and competitive outcome", leads to the six key elements to what they call the "momentum chain".

First, momentum shifts begin with a "precipitating event", like an interception or fumble recovery in football or a dramatic 3-point shot in basketball. The effect that this event has on each athlete varies depending on their own perception of the game situation, their self-confidence and level of self-efficacy to control the situation.

Second, this event leads to "changes in cognition, physiology, and affect." Again, depending on the athlete, his or her base confidence will determine how strongly they react to the events, to the point of having physiological changes like tightness and panic in negative situations or a feeling of renewed energy after positive events.

Third, a "change in behavior" would come from all of these internal perceptions. Coaches and fans would be able to see real changes in the style of play from the players as they react to the positive or negative momentum chain.

Fourth, the next logical step after behavior changes is to notice a "change in performance." Taylor and Demick note that momentum is the exception not the norm during a game. Without the precipitating event, there should not be noticeable momentum shifts.

Fifth, for sports with head to head competition, momentum is a two-way street and needs a "contiguous and opposing change for the opponent." So, if after a goal, the attacking team celebrates some increased PM, but the defending team does not experience an equal negative PM, then the immediate flow of the game should remain the same. Its only when the balance of momentum shifts from one team to the other. Levels of experience in athletes has been shown to mitigate the effects of momentum, as veteran players can handle the ups and downs of a game better than novices.

Finally, at the end of the chain, if momentum makes it that far, there should be an immediate outcome change. When the pressure of a precipitating event occurs against a team, the players may begin to get out of their normal, confident flow and start to overanalyze their own performance and skills. We saw this in Dr. Sian Beilock's research in our article, Putt With Your Brain - Part 2. As an athlete's skills improve they don't need to consciously focus on them during a game. But pressure brought on by a negative event can take them out of this "automatic" mode as they start to focus on their mechanics to fix or reverse the problem. 


As Patrick Cohn, a sport psychologist, pointed out in a recent USA Today article on momentum, "You stop playing the game you played to be in that position. And the moment you switch to trying not to screw up, you go from a very offensive mind-set to a very defensive mind-set. If you're focusing too much on the outcome, it's difficult to play freely. And now they're worried more about the consequences and what's going to happen than what they need to do right now."


There is no doubt that we will continue to hear references to momentum swings during games. When you do, you can conduct your own mini experiment and watch the reactions of the players and the teams over the next section of the game to see if that "precipitating event" actually leads to a game-changing moment.

ResearchBlogging.org


Jim Taylor, Andrew Demick (1994). A multidimensional model of momentum in sports Journal of Applied Sport Psychology, 6 (1), 51-70 DOI: 10.1080/10413209408406465

Retirement Rebound - The Return of Torres, Favre and Armstrong

Maybe its the fear of turning 40. Maybe its the feeling of unfinished business. Maybe its the fire in the belly that has not quite extinguished. For retired elite athletes, the itch is always there to make a return after experiencing "life after sport". For some, it becomes too strong to ignore. 

This year has seen the return of at least three champions, Dara Torres, Lance Armstrong and Brett Favre. As they explain their individual reasons for coming back, some similarities emerge that have more to do with psychological needs than practical needs. In a recent Miami Herald article, Torres explained her comeback to competitive swimming at age 41, "For me, it's not like I sat around and watched swimming on TV and thought, `Oh, I wish I was still competing'. It was more gradual. But all of a sudden, something goes off inside you and you start seriously thinking about a comeback. You'd think the competitive fire would die down with maturity, but I've actually gotten worse. I wasn't satisfied with silver medals. I hate to lose now more than I did in my 20s. I'm still trying to figure out why.''

Drawing inspiration from Torres, Lance Armstrong has decided to make a comeback at age 37 with a declared goal to win his eighth Tour de France. In a recent Vanity Fair article, he described his rationale, “Look at the Olympics. You have a swimmer like Dara Torres. Even in the 50-meter event [freestyle], the 41-year-old mother proved you can do it. The woman who won the marathon [Constantina Tomescu-Dita, of Romania] was 38. Older athletes are performing very well. Ask serious sports physiologists and they’ll tell you age is a wives’ tale. Athletes at 30, 35 mentally get tired. They’ve done their sport for 20, 25 years and they’re like, I’ve had enough. But there’s no evidence to support that when you’re 38 you’re any slower than when you were 32."

Is it the 40 factor? Brett Favre, who turns 39 in October, made his well-publicized return to the NFL last month wanting to return so badly that he accepted a trade to the New York Jets so that he could play. His public and emotional decision to retire in March, only to begin hinting at a comeback in early summer showed the internal struggle he had with stepping away from sports. 


You could hear the indecision in his retirement press conference, "I've given everything I possibly can give to this organization, to the game of football, and I don't think I've got anything left to give, and that's it.", Favre said. "I know I can play, but I don't think I want to. And that's really what it comes down to. Fishing for different answers and what ifs and will he come back and things like that, what matters is it's been a great career for me, and it's over. As hard as that is for me to say, it's over. There's only one way for me to play the game, and that's 100 percent. Mike and I had that conversation the other night, and I will wonder if I made the wrong decision. I'm sure on Sundays, I will say I could be doing that, I should be doing that. I'm not going to sit here like other players maybe have said in the past that I won't miss it, because I will. But I just don't think I can give anything else, aside from the three hours on Sundays, and in football you can't do that. It's a total commitment, and up to this point I have been totally committed." 

Some observers point to the end of the Packers' 2007-2008 season with a heart-wrenching Favre interception in overtime that sent the Giants to the Super Bowl instead of Green Bay. Being that close to the pinnacle of his sport must have been confidence that his skills had not diminished and once the fatigue of the past season had passed (by about June), that he was not ready to just ride the tractor in Mississippi for the next 40 years.

So, what do the sport psychologists make of these second thoughts? These three athletes are world famous, but what about the hundreds of professional athletes that have had to make the same decision without all of the front page stories and fanfare? Why does Chris Chelios, all-star and future Hall of Famer in the NHL, continue to avoid the retirement decision at age 45? 


Coaches aren't immune either. Bobby Bowden of Florida State and Joe Paterno of Penn State have refused to retire to the point of becoming an awkward story for their schools and fans. ''After all the adulation and excitement wear off and elite athletes come face to face with retirement and a more mundane life, they suffer a sense of loss, almost like a death,'' said sport psychologist John F. Murray. "If you're Lance Armstrong, you realize that what you are is a cyclist, that is your identity, and if you feel you have one or two more titles in you, why let it go? Why not tackle unresolved challenges? Competing at that level provides a high that is hard to match. How can you not be addicted to that?''

Beyond the professional ranks, thousands of college and Olympic athletes are left with the realization that they face similar decisions of when to "give up the dream" and move into the more practical world of finishing their education and finding a job. Their emotional attachment to their sport has developed over years of building an identity linked to their success on the field. 


Despite the statistics showing the "funnel effect" of the diminishing number of athletes getting to the "next level", younger athletes continue to believe they are the ones that will make it to the top. There is also the more emotional issue of unwillingly leaving a sport because of injury or simply not making the team due to diminished skills. Dr. Murray adds, "When your whole life has been geared toward athletic excellence, the prospects of retirement can be dreadful! This is commonplace at collegiate level where 99 per cent of the athletes do not go on to play their sport professionally. Counseling is a way to prepare athletes for the inevitable loss that occurs after the glory is over and only memories remain. As with any loss, people need effective ways to cope. Going at it all on your own might work for some, but I’ll submit that the vast majority of athletes benefit from early discussion and planning for retirement. There is definitely life after sport."

Some colleges and universities, as well as some professional teams, have started to offer formal "retirement planning" for athletes as their formal sport careers wind down. Life After Sports, a counseling firm started by Adrian McBride, a former college and NFL player, provides services to retiring college athletes to help them emotionally and practically adjust to a post-sports life. The University of North Carolina has set-up the Center for the Study of Retired Athletes to offer a home for academic research into these issues.

Additional academic research is also coming out on athlete retirement including two articles this year (see citations below) from the Journal of Applied Sport Psychology. First, Katie Warriner and David Lavallee of the University of Wales interviewed former elite gymnasts regarding their retirement at a relatively young age from competitive sport. They found the loss of identity to be the biggest adjustment. Second, Patricia Lally and Gretchen Kerr looked at how parents cope with their children's "retirement" from sport, as they also go through withdrawl symptoms when the "end of the dream" finally comes and the lifelong ambition for their child's athletic success is over.

Who's next up for a retirement rebound? Just as Lance got inspiration from Torres and maybe Favre, the trend may continue. The Bulls could use Jordan or Pippen and Roger Clemens is never far away from a phone. Stay tuned!

ResearchBlogging.org



Katie Warriner, David Lavallee (2008). The Retirement Experiences of Elite Female Gymnasts: Self Identity and the Physical Self Journal of Applied Sport Psychology, 20 (3), 301-317 DOI: 10.1080/10413200801998564

Patricia Lally, Gretchen Kerr (2008). The Effects of Athlete Retirement on Parents Journal of Applied Sport Psychology, 20 (1), 42-56 DOI: 10.1080/10413200701788172

Putt With Your Brain - Part 2

If there is a poster child sport for our favorite phrase, "Sports Are 80 Percent Mental", it must be golf. Maybe its the slow pace of play that gives us plenty of time to think between shots. Maybe its the "on stage" performance feeling we get when we step up to that first tee in front of our friends (or strangers!) Maybe its the "high" of an amazing approach shot that lands 3 feet from the cup followed by the "low" of missing the birdie putt. 

From any angle, a golf course is the sport psychologist's laboratory to study the mix of emotions, confidence, skill execution and internal cognitive processes that are needed to avoid buying rounds at the 19th hole. Last time, we looked at some of the recent research on putting mechanics, but, as promised, we now turn to the mental side of putting. Sian Beilock and her team at the University of Chicago's Human Performance Lab recently released the latest of a string of research studies on sports performance, or more specifically, how not to choke under pressure. Lucky for us, they chose putting as their sport skill of choice. This ties in with Dr. Beilock's theory of embodied cognition that we featured in Watching Sports Is Good For Your Brain.

An underlying theme to this work is the concept of automaticity, or the ability to carry out sport skills without consciously thinking about them. Performing below expectations (i.e. choking) starts when we allow our minds to step out of this automatic mode and start thinking about the steps to our putting stroke and all of those "swing thoughts" that come with it ("keep your elbows in", "head down", "straight back").


Our brain over analyzes and second-guesses the motor skills we have learned from hundreds of practice putts. Previously, we looked at automaticity in other sports. Of course, a key distinction to the definition of choking is that you are playing "well below expectations". If you normally shoot par, but now start missing easy putts, then there may be distractions that are taking you out of your normal flow. Choking implies a temporary and abnormal event. Automaticity theory would claim that it is these distractions from some perceived pressure to perform that are affecting your game.

Most research into sport skill performance divides the world into two groups, novices and experts. Most sports have their own measures of where the dividing line is between these groups. Expertise would imply performance results not just experience. So, a golfer who has been hacking away for 20 years but still can't break 100 would still be put in the "novice" category.


Sport scientists design experiments that compare performance between the groups given some variables, and then hypothesize on the reason for the observed differences. Beilock, et al have looked at golf putting from several different angles over the years. Their research builds on itself, so let's review in reverse chronological order.

Back in 2001, they began by comparing the two competing theories of choking, distraction theory vs. explicit monitoring theory, and designed a putting experiment to find the better explanation. Distraction theory explains choking by assuming that the task of putting requires your direct attention and that high pressure situations will cause you to perform dual tasks - focus on your putting but also think about the pressure. This theory assumes there is no automaticity in skill learning and that we have to focus our attention on the skill every time.


Explicit monitoring theory claims that over time, as we practice a skill to the point of becoming an "expert", we proceduralize the task so that it becomes "automatic". Then, during a high pressure situation, our brain becomes so concerned about performance that it takes us out of automatic mode and tries to focus on each step of the task. The research supported the explicit monitoring theory as it was shown that the golf putting task was affected by distractions and pressure for the experts but not the novice putters.

So, how do we block out the pressure, so that our automaticity can kick in? Another 2001 study by Beilock looked at mental imagery during putting. Using the same explicit monitoring theory, should we try to think positive thoughts, like "this ball is going in the hole" or "I have made this putt many times"? Also, what happens if a stray negative thought, "don't miss this one!" enters our brain? Should we try to suppress it and replace it with happy self-talk? She set up four groups, one receiving positive comments, one receiving negative comments, one receiving negative comments followed by positive comments and one receiving none as a control group.


As expected, the happy people did improve their putting over the course of the trials, while the negative imagery hurt performance. But, the negative replaced with positive thought group did not show any more improvement over the control group. So, when faced with a high pressure, stressful situation ripe with the possibilities of choking, try to repeat positive thoughts, but don't worry too much if the occasional doubt creeps in.

Our strategy towards putting should also vary depending on our current skill level. While learning the intricacies of putting, novices should use different methods than experts, according to a 2004 study by Beilock, et al. Novice golfers need to pay attention to the step by step components of their swing, and they perform better when they do focus on the declarative knowledge required. 


Expert golfers, however, have practiced their swing or putt so often that it has become "second nature" to the point that if they are told to focus on the individual components of their swing, they perform poorly. The experiment asked both novices and expert golfers to first focus on their actual putting stroke by saying the word "straight" when hitting the ball and to notice the alignment of the putter face with the ball. Next, they were asked to putt while also listening for a certain tone played in the background. When they heard the tone they were to call it out while putting. 

The first scenario, known as "skill-focused", caused the novices to putt more accurately but the experts to struggle. The second scenario, called "dual-task", distracted the novices enough to affect their putts, while the experts were not bothered and their putting accuracy was better. Beilock showed that novices need the task focus to succeed while they are learning to putt, while experts have internalized the putting stroke so that even when asked to do two things, the putting stroke can be put on "auto-pilot".

Finally, in 2008, Beilock's team added one more twist to this debate. Does a stress factor even affect a golfer's performance in their mind before they putt? This time, golfers, divided into the usual novice and expert groups, were asked to first imagine or "image execute" themselves making a putt followed by an actual putt. The stress factor was to perform one trial under a normal, "take all the time you need" time scenario and then another under a speeded or time-limited scenario. 


The novices performed better under the non-hurried scenario in imagining the putt first followed by the actual putt. The experts, however, actually did better in the hurried scenario and worse in the relaxed setting. Again, the automaticity factor explains the differences between the groups.

The bottom line throughout all of these studies is that if you're learning to play golf, which includes putting, you should focus on your swing/stroke but beware of the distractions which will take away your concentration. That seems pretty logical, but for those that normally putt very well, if you feel stress to sink that birdie putt, don't try to focus in on the mechanics of your stroke. Trust the years of experience that has taught your brain the combination of sensorimotor skills of putting.

Just remember the Chevy Chase/Ty Webb philosophy; "I'm going to give you a little advice. There's a force in the universe that makes things happen. And all you have to do is get in touch with it, stop thinking, let things happen, and be the ball.... Nah-na-na-na, Ma-na-na-na...."


ResearchBlogging.orgSian L. Beilock, Thomas H. Carr (2001). On the fragility of skilled performance: What governs choking under pressure? Journal of Experimental Psychology: General, 130 (4), 701-725 DOI: 10.1037//0096-3445.130.4.701

Sian L. Beilock; James A. Afremow; Amy L. Rabe; Thomas H. Carr (2001). "Don't Miss!" The Debilitating Effects of Suppressive Imagery on Golf Putting Performance Journal of Sport and Exercise Psychology, 23 (3)

Beilock S.L.; Bertenthal B.I.; McCoy A.M.; Carr T.H. (2004). Haste does not always make waste: Expertise, direction of attention, and speed versus accuracy in performing sensorimotor skills Psychonomic Bulletin & Review, 11 (2), 373-379

Sian Beilock, Sara Gonso (2008). Putting in the mind versus putting on the green: Expertise, performance time, and the linking of imagery and action The Quarterly Journal of Experimental Psychology, 61 (6), 920-932 DOI: 10.1080/17470210701625626

Putt With Your Brain - Part 1

If Mark Twain thinks golf is "a good walk spoiled", then putting must be a brief pause to make you reconsider ever walking again. With about 50% of our score being determined on the green, we are constantly in search of the "secret" to getting the little white ball to disappear into the cup. Lucky for us, there is no shortage of really smart people also looking for the answer. The first 8 months of 2008 have been no exception, with a golf cart full of research papers on just the topic of putting. 

Is the secret in the mechanics of the putt stroke or maybe the cognitive set-up to the putt or even the golfer's psyche when stepping up to the ball? This first post will focus on the mechanical side and then we'll follow-up next time with a look inside the golfer's mind.

Let's start with a tip that most golf instructors would give, "Keep your head still when you putt". Jack Nicklaus said it in 1974, "the premier technical cause of missed putts is head movement" (from "Golf My Way") and Tiger Woods said it in 2001, "Every good putter keeps the head absolutely still from start to finish" (from "How I Play Golf"). Who would argue with the two greatest golfers of all time? His name is Professor Timothy Lee, from McMaster University, and he wanted to test that observation. So, he gathered two groups of golfers, amateurs with handicaps of 12-40, and professionals with scratch handicaps. Using an infrared tracking system, his team tracked the motion of the putter head and the golfer's head during sixty putts.

As predicted, the amateurs' head moved back in unison with their putter head, something Lee calls an "allocentric" movement, which agrees with the advice that novice golfers move their head. However, the expert golfers did not keep their head still, but rather moved their heads slightly in the opposite direction of the putter head. On the backswing, the golfer's head moved slightly forward; on the forward stroke, the head moved slightly backward. This "egocentric" movement may be the more natural response to maintain a centered, balanced stance throughout the stroke.


"The exact reasons for the opposite coordination patterns are not entirely clear," explains Lee. "However, we suspect that the duffers tend to just sway their body with the motions of the putter. In contrast, the good golfers probably are trying to maintain a stable, central body position by counteracting the destabilization caused by the putter backswing with a forward motion of the head. The direction of head motion is then reversed when the putter moves forward to strike the ball." Does that mean that pro golfers like Tiger are not keeping their heads still? No, just that you may not have to keep your head perfectly still to putt effectively.

So, what if you do have the bad habit of moving your head? Just teach yourself to change your putting motion and you will be cutting strokes off of your score, right? Well, not so fast. Simon Jenkins of Leeds Metropolitan University tested 15 members of the PGA European Tour to see if they could break old physical habits during putting. His team found that players who usually use shoulder movement in their putting action were not able to change their ways even when instructed to use a different motion. Old habits die hard.

Let's say you do keep your head still (nice job!), but you still 3-putt most greens? What's the next step on the road to birdie putts? Of the three main components of a putt, (angle of the face of the putter head on contact, putting stroke path and the impact point on the putter), which has the greatest effect on success? Back in February, Jon Karlsen of the Norwegian School of Sport Sciences in Oslo, asked 71 elite golfers (mean handicap of 1.8) to make a total of 1301 putts (why not just 1300?) from about 12 feet to find out. His results showed that face angle was the most important (80%), followed by putter path (17%) and impact point (3%).

OK, forget the moving head thing and work on your putter blade angle at contact and you will be taking honors at every tee. Wait, Jon Karlsen came back in July with an update. This time he compared green reading, putting technique and green surface inconsistencies to see which of those variables we should discuss with our golf pro. Forty-three expert golfers putted 50 times from varying distances. Results showed that green reading (60%) was the most dominant factor for success with technique (34%) and green inconsistency (6%) trailing significantly.

So, after reading all of this, all you really need is something like the BreakMaster, which will help you read the breaks and the slope to the hole! Then, keep the putter blade square to the ball and don't move your head, at least not in an allocentric way, that is if you can break your bad habit of doing it. No problem, right? Well, next time we'll talk about your brain's attitude towards putting and all the ways your putt could go wrong before you even hit it!

ResearchBlogging.org

Timothy D. Lee, Tadao Ishikura, Stefan Kegel, Dave Gonzalez, Steven Passmore (2008). Head–Putter Coordination Patterns in Expert and Less Skilled Golfers Journal of Motor Behavior, 40 (4), 267-272 DOI: 10.3200/JMBR.40.4.267-272


Jenkins, Simon (2008). Can Elite Tournament Professional Golfers Prevent Habitual Actions in Their Putting Actions? International Journal of Sports Science & Coaching, 3 (1), 117-127


Jon Karlsen, Gerald Smith, Johnny Nilsson (2007). The stroke has only a minor influence on direction consistency in golf putting among elite players Journal of Sports Sciences, 26 (3), 243-250 DOI: 10.1080/02640410701530902

Four Sites You Have To Visit

When you start a new blog about a niche topic like "sports and brains", you definitely need some friends along the way to get your stories out there and noticed by readers. So, I just wanted to take a time-out to thank and recommend four terrific sites and the people behind them.


First, Guy Kawasaki has not only blogged and Tweeted my stories to thousands of his readers but has now added this site to one of the coolest news/blog aggregators on the Web, Alltop.com. If you haven't visited Alltop, it is best described as an "online newsstand" where you can pick your favorite category from a few hundred and then see hand-picked sites and their most recent stories. Of course, I have a certain bias towards sports.alltop.com and fitness.alltop.com (scroll to the bottom of each page to see why!).


And, for a mix of news, rumors and the best of the Web, stop by another Guy creation, Truemors. Besides being a serial entrepreneur and venture capitalist, Guy is best known as a popular author and speaker. Take a look at his work here: Books by Guy Kawasaki.
Second, Hank Campbell over at ScientificBlogging.com has made a home for my ramblings and provides a very active and large audience of smart science readers. ScientificBlogging partners with LiveScience.com, Space.com and the other Imaginova sites to offer a great end-to-end science news and blogging resource. ScientificBlogging and LiveScience headlines can also be found on science.alltop.com, while Space can be found on, get this, space.alltop.com.

Third, Dave Munger, of Cognitive Daily fame, (psychology.alltop.com), started a unique indexing service at ResearchBlogging.org. When citing an academic article, the Research Blogging site will provide HTML code to include in the post, so that it can be spidered and indexed and then categorized on the RB site. You can see the RB logo and citations on any post where I discuss some academic research. Dave has been a great help answering questions and supporting the site.

And, for a really cool mashup of all of these resources in action, here is a link at Truemors: Sports Viewing Boosts Brain Power, which links to my latest story at ScientificBlogging which links to my home blog here, which includes a citation that indexes it to my page at Research Blogging!!


Finally, thanks to all of you who stop by "80% Mental" to catch up on the latest sport science and sports cognition research. I absolutely enjoy researching, writing and presenting these stories and if you ever have questions or topics you would like covered, just leave me a comment! Don't forget that you can always subscribe to 80% Mental via your favorite news reader or by e-mail.

Watching Sports Is Good For Your Brain

When was the last time you listened to a sporting event on the radio? If given a choice between watching the game on a big screen plasma in HD or turning on the AM radio, most of us would probably choose the visual sensation of television. But, for a moment, think about the active attention you need in order to listen to a radio broadcast and interpret the play-by-play announcer's descriptions. As you hear the words, your "mind's eye" paints the picture of the action so you can imagine the scene and situations. Your knowledge of the game, either from playing it or watching it for years helps you understand the narrative, the terms and the game's "lingo".


Now, imagine that you are listening to a broadcast about a sport you know nothing about. Hearing Bob Uecker or Vin Scully say, "With two out in the ninth, the bases are loaded and the Brewers' RBI leader has two strikes. The infield is in as the pitcher delivers. Its a hard grounder to third that he takes on the short hop and fires a bullet to first for the final out." If you have no baseball-specific knowledge, those sentences are meaningless. 

However, for those of us that have grown up with baseball, that description makes perfect sense and our mind's eye helped us picture the scene. That last sentence about the "hard grounder" and the thrown "bullet" may have even triggered some unconscious physical movements by you as your brain interpreted those action phrases. That sensorimotor reaction is at the base of what is called "embodied cognition". 
 
Sian Beilock, associate professor of psychology and leader of the Human Performance Lab at the University of Chicago, defined the term this way: "In contrast to traditional views of the mind as an abstract information processor, recent work suggests that our representations of objects and events are grounded in action. That is, our knowledge is embodied, in the sense that it consists of sensorimotor information about potential interactions that objects or events may allow." She cites a more complete definition of the concept in Six Views of Embodied Cognition by Margaret Wilson. Another terrific overview of the concept is provided by science writer Drake Bennet of the Boston Globe in his article earlier this year, "Don't Just Stand There, Think".


In a study released yesterday, "Sports Experience Changes the Neural Processing of Action Language", Dr. Beilock's team continued their research into the link between our learned motor skills and our language comprehension about those motor skills. Since embodied cognition connects the body with our cognition, the sports domain provides a logical domain to study it.


Their initial look at this concept was in a 2006 study titled, "Expertise and its embodiment: Examining the impact of sensorimotor skill expertise on the representation of action-related text", where the team designed an experiment to compare the knowledge representation skill of experienced hockey players and novices. Each group first read sentences describing both hockey-related action and common, "every-day" action, (i.e. "the referee saw the hockey helmet on the bench" vs. "the child saw the balloon in the air"). They were then shown pictures of the object mentioned in the sentences and were asked if the picture matched the action in the sentence they read.

Both groups, the athletes and the novices, responded equally in terms of accuracy and response time to the everyday sentences and pictures, but the athletes responded significantly faster to the hockey-specific sentences and pictures. The conclusion is that those with the sensorimotor experience of sport give them an advantage of processing time over those that have not had that same experience.


Now, you may be saying, "Ya' think!?" to this somewhat obvious statement that people who have played hockey will respond faster to sentence/picture relationships about hockey than non-hockey players. Stay with us here for a minute, as the 2006 study set the groundwork for Beilock's team to take the next step with the question, "is there any evidence that the athletes are using different parts of their brain when processing these match or no match decisions?" The link between our physical skill memory and our language comprehension would be at the base of the embodied cognition theory. 

So, in the latest research, the HPL team kept the same basic experimental design, but now wanted to watch the participants' brain activity using fMRI scanning. This time, there were three groups, hockey players, avid fans of hockey and novices who had no playing or viewing experience with hockey at all. First, all groups passively listened to sentences about hockey actions and also sentences about everyday actions while being monitored by fMRI.  Second, outside of the fMRI scanner, they again listened to hockey-related and everyday-related action sentences and then were shown pictures of hockey or every day action and asked if there was a match or mis-match between the sentence and the picture.


This comprehension test showed similar results as in 2006, but now the team could try to match the relative skill in comprehension to the neural activity shown in the fMRI scans when listening. Both the players and the fans showed increased activity in the left dorsal premotor cortex, a region thought to support the selection of well-learned action plans and procedures. 

You might be surprised that the fans' brains showed activity in the same regions as the athletes. We saw this effect in a previous post, "Does Practice Make Perfect", where those that practiced a new dance routine and those that only watched it showed similar brain area activity. On the other side, the total novices showed activity in the bilateral primary sensory-motor cortex, an area typically known for carrying out step by step instructions for new or novel tasks. 

So, the interesting finding here is that those with experience, either playing or watching, are actually calling on additional neural networks in their brains to help their normal language comprehension abilities. In other words, the memories of learned actions are linked and assist other cognitive tasks. That sounds pretty much like the definition of embodied cognition and Dr. Beilock's research has helped that theory take another step forward. In her words, "Experience playing and watching sports has enduring effects on language understanding by changing the neural networks that support comprehension to incorporate areas active in performing sports skills."


Take pride in your own brain the next time you hear, "Kobe dribbles the ball to the top of the key, crosses over, drives the lane, and finger rolls over Duncan for two." If you can picture that play in your mind, your left dorsal premotor cortex just kicked into gear!


ResearchBlogging.org






S. L. Beilock, I. M. Lyons, A. Mattarella-Micke, H. C. Nusbaum, S. L. Small (2008). Sports experience changes the neural processing of action language Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.0803424105



Lauren E. Holt, Sian L. Beilock (2006). Expertise and its embodiment: Examining the impact of sensorimotor skill expertise on the representation of action-related text Psychonomic Bulletin & Review, 13 (4), 694-701 PMID: 17201372

Video Games Move From The Family Room To The Locker Room

It sounds like a sales job from a 12 year old; "Actually, Dad, this is not just another video game. Its a virtual, scenario-based microcosm of real world experiences that will enhance my decision-making abilities and my cognitive perceptions of the challenges of the sport's environment."  You respond with, "So, how much is Madden 09?"  

With over 5 million copies of Madden 08 sold, the release of the latest version two weeks ago is rocketing up the charts.  Days and late nights are being spent all over the world creating rosters, customizing plays and playing entire seasons, all for pure entertainment purposes.  Can all of those hours spent with controller in hands actually be beneficial to young athletes?  Shouldn't they be outside in the fresh air and sunshine playing real sports?  Well, yes, to both questions.


Playing video games, (aka "gaming"), as a form of learning has been receiving increased recent attention from educational psychology researchers.  At this month's American Psychological Association annual convention, several groups of researchers presented studies of the added benefits of playing video games, from problem-solving and critical thinking to better scientific reasoning.  

In one of the studies by Fordham University psychologist Fran C. Blumberg, PhD, and Sabrina S. Ismailer, MSED, 122 fifth-, sixth- and seventh-graders' problem-solving behavior was observed while playing a video game that they had never seen before.  As the children played the game, they were asked to think aloud for 20 minutes. Researchers assessed their problem-solving ability by listening to the statements they were making while playing.   

The results showed that playing video games can improve cognitive and perceptual skills.  "Younger children seem more interested in setting short-term goals for their learning in the game compared to older children who are more interested in simply playing and the actions of playing," said Blumberg. "Thus, younger children may show a greater need for focusing on small aspects of a given problem than older children, even in a leisure-based situation such as playing video games."

Also, in a recent article on video game learning, David Williamson Shaffer, professor of educational psychology at the University of Wisconsin-Madision and author of the book "How Computer Games Help Children Learn", argues that if a game is realistically based on real-world scenarios and rules, it can help the child learn.  “The question though is," Shaffer said, "is what they are doing a good simulation of what is happening in the real world?"  Shaffer explains the research happening on this topic at his UW lab, named Epistemic Games:





Support for this new era of learning tools is coming from other interesting people, as well.  George Lucas of Star Wars fame has an educational foundation, Edutopia, which has shown recent interest in simulation learning.  Here is their introductory overview and accompanying video:






There are some words of caution out there.  In a recent article, educational psychologist Jane M. Healy, author of "Failure to Connect: How Computers Affect our Children's Minds and What We Can Do About It," urges educators to proceed carefully.  "The main question is whether the activity, whatever it is, is educationally valid and contributes significantly to whatever is being studied," she says.  "The point is not whether kids are 'playing' with learning, or what medium they are playing in — a ball field or a Wii setup or a physics lab or art studio — but rather why they are doing it.  Just because it is electronic does not make it any better, and it may turn out not to be as valuable."

If we accept that there is some validity to teaching/learning with video game simulations, how can we move this to the sports arena?  Obviously, there is no substitute for playing the real game with real players, opponents, pressure, etc., but more teams and coaches are turning to simulation games for greater efficiency in the learning process.  If the objective is to expose players to plays, tactics, field vision and critical thinking, then a gaming session can begin to introduce these concepts that will be validated later on the field during "real" practice.  

This homework can also be done at home, not requiring teammates, fields, equipment, etc.  As mentioned in the videos above, another driving factor in the use of games is to reach this young, Web 2.0 audience through a medium that they already know, understand and enjoy.  The motivation to learn is inherent with the use of games.  The "don't tell them its good for them" secret is key to seeing progress with this type of training.


One of the best examples of video game adaptation for sports learning is from XOS Technologies and their modified version of the Madden NFL game.  In 2007, they licensed the core development engine from EA Sports and created a football simulation, called SportMotion, that can be used for individual training.  

With the familiar Madden user interface, coaches can first load their playbook into the game, as well as their opponent's expected plays.  Then, the athlete can "play" the game but will now see their own team's plays being run by the virtual players.  Imagine the difference in learning style for a new quarterback.  Instead of studying static X's and O's on a two-dimensional piece of paper, they can now watch and then play a virtual simulation of the same play in motion against a variety of different defenses.  With a "first-person" view of the play unfolding, they will see the options available in a "real-time" mode which will force faster reaction and decision-making skills.  

To take the simulation one step further, XOS has added a virtual reality option that takes the game controller out of the player's hands and replaces it with a VR suit and goggles allowing him to physically play the game, throw the ball, etc. through his virtual eyes.  Take a look at this promotional video from XOS:





XOS is winning some high praise for its system, including none other than Phillip Fulmer, Head Coach of the University of Tennesee football team.  “We’re leading the nation by taking advantage of this cutting-edge technology and we couldn’t be more pumped about it,” Fulmer said. “UT football has a long and storied tradition of success and because we look to pioneer groundbreaking concepts before anyone else, we’ll proudly continue that history. The XOS PlayAction Simulator begins a new chapter for UT and we’re pleased to add it to our football training regiment.” 

Albert Tsai, vice president of advanced research at XOS Technologies, says, “We’ve basically added functionality to popular EA video games such as customizable playbooks, diagrams and testing sequences to better prepare athletes for specific opponents.  Additionally, the software includes built-in teaching and reporting tools so that coaches Fulmer, Cutcliffe and Cooter can analyze and track the tactical-skill development of the team. At the same time, the Volunteers can experience immediate benefits because the familiarity with the EA SPORTS brand requires little to no learning curve for their players.”

So, the next time your son (or daughter!) is begging for 10 more minutes on the Xbox to make sure the Packers destroy the Vikings once again (sorry, a little Wisconsin bias), you may want to reconsider pulling the plug.  Then, send them outside for that fresh air.

Starbucks' Secret Sports Supplement

For an athlete, it seems to good to be true. A "sports supplement" that increases alertness, concentration, reaction time and focus while decreasing muscle fatigue or at least the perception of fatigue. It can even shorten recovery time after a game. HGH? EPO? Steroids? Nope, just a grande cup of Juan Valdez's Best, Liquid Lightning, Morning Mud, Wakey Juice, Mojo, Java, aka coffee. Actually, the key ingredient is caffeine which has been studied repeatedly for its ergogenic (performance-enhancing) benefits in sports, both mentally and physically. Time after time, caffeine proves itself as a relatively safe, legal and inexpensive boost to an athlete.

Or does it? If caffeine is such a clear cut performance enhancing supplement, why did the World Anti-Doping Agency (WADA), who also monitors this month's Beijing Olympics for the International Olympic Committee (IOC), first add caffeine to its banned substance list, only to remove it in 2004? At the time that it was placed on the banned list, the threshold for a positive caffeine test was set to a post-exercise urinary caffeine concentration of 12 µg/ml (about 3-4 cups of strong coffee). However, more recent research has shown that caffeine has ergogenic effects at levels as low as the equivalent of 1-2 cups of coffee. So, it was hard for WADA to know where to draw the line between athletes just having a few morning cups of coffee/tea or maybe some chocolate bars and athletes that were intentionally consuming caffeine to increase their performance level. However, caffeine is still on the WADA monitoring list as a substance to screen for and watch for patterns of use.


Meanwhile, athletes are still convinced that caffeine helps them.
In a recent survey from Liverpool John Moores University, 480 athletes were interviewed about their caffeine use. One third of track and field athletes and 60% of cyclists reported using caffeine specifically to give them a boost in competition. In addition, elite-level athletes interviewed were more likely to rely on caffeine than amateurs. Dr. Neil Chester, co-leader of the study, commented about the confusion created by the WADA status change for caffeine, "There's been a lack of communication from WADA and there is a question about whether or not sporting authorities are condoning its use. Ultimately there is a need to clarify the use of caffeine within the present anti-doping legislation."

So, have athletes found a loophole to exploit that gives them an edge? Dr. Carrie Ruxton recently completed a literature survey to summarize 41 double-blind, placebo-controlled trials published over the past 15 years to establish what range of caffeine consumption would maximize benefits and minimize risk for cognitive function, mood, physical performance and hydration. The studies were divided into two categories, those that looked at the cognitive effects and those that looked at physical performance effects. The results concluded that there was a significant improvement in cognitive functions like attention, reaction time and mental processing as well as physical benefits described as increased "time to exhaustion" and decreased "perception of fatigue" in cycling and running tests. Longer, endurance type exercise showed greater results than short-term needs for energy.

Given these results, how exactly does caffeine perform these wonderful tricks? Dr. Ruxton explains from the study, "Caffeine is believed to impact on mood and performance by inhibiting the binding of both adenosine and benzodiazepine receptor ligands to brain membranes. As these neurotransmitters are known to slow down brain activity, a blockade of their receptors lessens this effect. " Bottom line, the chemicals in your brain that would cause you to feel tired are blocked, giving you a feeling of ongoing alertness. Your body still needs the sleep, caffeine just delays the feeling of being tired.

As to the physiological benefits, caffeine has also been shown to stimulate the release of fat into the bloodstream. The early conclusion was that the increased free fatty acids in the blood would allow our muscles to use fat as fuel and spare glycogen (carbohydrates) allowing us to exercise longer. Another theory is that caffeine stimulates the central nervous system reducing our perception of effort so that we feel that we can continue at an increased pace for longer periods.


The discussion on glycogen has recently taken another interesting twist; caffeine's apparent ability to replenish glycogen (the body's primary fuel source) more rapidly
after an intense workout. A team at the Garvan Institute for Medical Research has found that athletes who consumed a combination of carbohydrates and caffeine following an exhaustive exercise had 66% more glycogen in their muscles four hours later, compared to when they consumed carbohydrates alone. 

They asked cyclists to pedal to exhaustion in the lab, then gave them a drink that contained either carbohydrates with caffeine or just carbohydrates (the cyclists did not know which drink they were getting). They repeated the process 7-10 days later and reversed the groups. Muscle biopsies and blood samples were tested for levels of glycogen after each trial period. The researchers did not have an explanation for the increased levels of glycogen resulting from the caffeine-spiked juice. One theory is the higher circulating blood glucose and plasma insulin levels caused by the caffeine were key factors. In addition, caffeine may increase the activity of several signaling enzymes, including the calcium-dependent protein kinase and protein kinase B (also called Akt), which have roles in muscle glucose uptake during and after exercise.

So, before you start drinking the Starbucks by the gallon, here are some guidelines.
You can consume 2-2.5 mg of caffeine per pound of body weight daily to achieve its ergogenic effects. This equates to 250-312 mg for a 125-pound woman and 360-450 mg for a 180-pound man. More is not better, as other research has shown a decline in benefit and an increase in caffeine's side effects beyond this level. One "grande" cup (16 oz.) of Starbucks coffee contains about 320-500 mg of caffeine, while a 12 oz. can of soda will provide 35-70 mg of caffeine. Maybe we'll see the ultimate sports drink soon, kind of like Monster meets Gatorade... wait, its already here: Lucozade Sport with Caffeine Boost!

ResearchBlogging.org





C. H. S. Ruxton (2008). The impact of caffeine on mood, cognitive function, performance and hydration: a review of benefits and risks Nutrition Bulletin, 33 (1), 15-25 DOI: 10.1111/j.1467-3010.2007.00665.x


N. Chester, N. Wojek (2008). Caffeine Consumption Amongst British Athletes Following Changes to the 2004 WADA Prohibited List International Journal of Sports Medicine, 29 (6), 524-528 DOI: 10.1055/s-2007-989231

D. J. Pedersen, S. J. Lessard, V. G. Coffey, E. G. Churchley, A. M. Wootton, T. Ng, M. J. Watt, J. A. Hawley (2008). High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine Journal of Applied Physiology, 105 (1), 7-13 DOI: 10.1152/japplphysiol.01121.2007

Inside An Olympian's Brain


Michael Phelps, Nastia Liukin, Misty May-Treanor and Lin Dan are four Olympic athletes who have each spent most of their life learning the skills needed to reach the top of their respective sports, swimming, gymnastics, beach volleyball and badminton (you were wondering about Lin, weren't you...) Their physical skills are obvious and amazing to watch. For just a few minutes, instead of being a spectator, try to step inside the heads of each of them and try to imagine what their brains must accomplish when they are competing and how different the mental tasks are for each of their sports.


On a continuum from repetitive motion to reactive motion, these four sports each require a different level of brain signal to muscle movement. Think of Phelps finishing off one more gold medal race in the last 50 meters. His brain has one goal; repeat the same stroke cycle as quickly and as efficiently as possible until he touches the wall. There isn't alot of strategy or novel movement based on his opponent's movements. Its simply to be the first one to finish. 

What is he consciously thinking about during a race? In his post-race interviews, he says he notices the relative positions of other swimmers, his energy level and the overall effort required to win (and in at least one race, the level of water in his goggles.) At his level, the concept of automaticity (as discussed in a previous post) has certainly been reached, where he doesn't have to consciously "think" about the components of his stroke. In fact, research has shown that those who do start analyzing their body movements during competition are prone to errors as they take themselves out of their mental flow.


Moving up the continuum, think about gymnastics. Certainly, the skills to perform a balance beam routine are practiced to the point of fluency, but the skills themselves are not as strictly repetitive as swimming. There are finer points of each movement being judged so gymnasts keep several mental "notes" about the current performance so that they can "remember" to keep their head up or their toes pointed or to gather speed on the dismount. There also is an order of skills or routine that needs to be remembered and activated.

While swimming and gymnastics are battles against yourself and previously rehearsed movements, sports like beach volleyball and badminton require reactionary moves directly based on your opponents' movements. Rather than being "locked-in" to a stroke or practised routine, athletes in direct competition with their opponents must either anticipate or react to be successful.



So, what is the brain's role in learning each of these varied sets of skills and what commands do our individual neurons control? Whether we are doing a strictly repetitive movement like a swim stroke or a unique, "on the fly" move like a return of a serve, what instructions are sent from our brain to our muscles? Do the neurons of the primary motor cortex (where movement is controlled in the brain) send out signals of both what to do and how to do it?

Researchers at the McGovern Institute for Brain Research at MIT led by Robert Ajemian designed an experiment to solve this "muscles or movement" question. They trained adult monkeys to move a video game joystick so that a cursor on a screen would move towards a target. While the monkeys learned the task, they measured brain activity with functional magnetic resonance imaging (fMRI) to compare the actual movements of the joystick with the firing patterns of neurons. 

The researchers then developed a model that allowed them to test hypotheses about the relationship between neuronal activity that they measured in the monkey's motor cortex and the resulting actions. They concluded that neurons do send both the specific signals to the muscles to make the movement and a goal-oriented instruction set to monitor the success of the movement towards the goal. Here is a video synopsis of a very similar experiment by Miguel Nicolelis, Professor of Neurobiology at Duke University:


To back this up, Andrew Schwartz, professor of neurobiology at the McGowan Institute for Regenerative Medicine at the University of Pittsburgh School of Medicine, and his team of researchers wanted to isolate the brain signals from the actual muscles and see if the neuron impulses on their own could produce both intent to move and the movement itself. They taught adult monkeys to feed themselves using a robotic arm while the monkey's own arms were restrained. Instead, tiny probes the width of a human hair were placed in the monkey's motor cortex to pick up the electrical impulses created by the monkey's neurons. These signals were then evaluated by software controlling the robotic arm and the resulting movement instructions were carried out. The monkeys were able to control the arm with their "thoughts" and feed themselves food. Here is a video sample of the experiment:

"In our research, we've demonstrated a higher level of precision, skill and learning," explained Dr. Schwartz. "The monkey learns by first observing the movement, which activates his brain cells as if he were doing it. It's a lot like sports training, where trainers have athletes first imagine that they are performing the movements they desire."



It seems these "mental maps" of neurons in the motor cortex are the end goal for athletes to achieve the automaticity required to either repeat the same rehearsed motions (like Phelps and Liukin) or to react instantly to a new situation (like May-Treanor and Dan). Luckily, we can just practice our own automaticity of sitting on the couch and watching in a mesemerized state.

ResearchBlogging.org

R AJEMIAN, A GREEN, D BULLOCK, L SERGIO, J KALASKA, S GROSSBERG (2008). Assessing the Function of Motor Cortex: Single-Neuron Models of How Neural Response Is Modulated by Limb Biomechanics Neuron, 58 (3), 414-428 DOI: 10.1016/j.neuron.2008.02.033

Meel Velliste, Sagi Perel, M. Chance Spalding, Andrew S. Whitford, Andrew B. Schwartz (2008). Cortical control of a prosthetic arm for self-feeding Nature, 453 (7198), 1098-1101 DOI: 10.1038/nature06996

Imagine Winning Gold In Beijing

Imagine winning a gold medal at the Beijing Olympics.  No really, go ahead, close your eyes and visualize it.  What did you see?  Were you standing on the medal platform looking out at the crowd, waving and taking in the scene through your own eyes, or were you a spectator in the crowd watching yourself getting the medal put around your neck?  This choice between "first-person" or "third-person" visualization actually makes a difference on our motivation to achieve a future goal.


Noelia A. Vasquez, at York University and Roger Buehler, at Wilfrid Laurier University wanted to see if there was a link between our visualization perspective and our motivation level to achieve the imagined goal.  They asked 47 university students to imagine the successful completion of a performance task that was in their near future, whether it be a speech in a class or an upcoming athletic competition.  They were also asked to assume that the task went extremely well.  One group of students were asked to imagine this scene "through their own eyes" seeing the environment as they would actually experience it.  The second group was told to use the third-person perspective, pretending they were "in the crowd" watching themselves as others would see them achieving this goal.  Next, they were given a survey that asked each group how motivated they were to now go make this successful scene a reality. 


As hypothesized, the group that saw the scene through their audience's eyes (third-person) ranked their motivation to now succeed significantly higher than those that imagined it through their own eye (first-person).  The authors' explanation for this is the perceived additional importance attached to the task when we consider other peoples' opinion of us and our natural desire to increase our status in our peer group.  Seeing this newly elevated social acceptance and approval of ourselves from the eyes of our peers motivates us even more to reach for our goals.


The road to achievements like an Olympic gold medal is a long one with many steps along the way.  Over the years, as athletes maintain their training regimen, they can keep imagining the future goal, but they may need to also look back and recognize the improvements they have made over time.  This "progress to date" assessment will also provide motivation to keep going once they realize the hard work is actually having the desired effect and moving them along the desired path.  So, as they review their past to present progress, does the first or third person perspective make a difference there as well?



Researchers from Cornell, Yale and Ohio State, led by Thomas Gilovich, professor of psychology at Cornell, designed an experiment to find out.  They recruited a group of university students who had described their high-school years as "socially awkward" to now recall those years and compare them with their social skill in college.  The first group was asked to recall the past from a first-person perspective, just as their memories would provide them.  The second group was asked to remember themselves through the perspective of their classmates (third-person).  Next, each group was asked to assess the personal change they had accomplished since then.


As predicted, the group that had recalled their former selves in the third person reported greater progress and change towards a more social and accepted person in college than the group that remembered in the first-person.  "We have found that perspective can influence your interpretation of past events. In a situation in which change is likely, we find that observing yourself as a third person -- looking at yourself from an outside observer's perspective -- can help accentuate the changes you've made more than using a first-person perspective," says Gilovich.  "When participants recalled past awkwardness from a third-person perspective, they felt they had changed and were now more socially skilled," said Lisa K. Libby, an assistant professor of psychology at Ohio State University. "That led them to behave more sociably and appear more socially skilled to the research assistant."


So, whether looking forward or backward, seeing yourself through other's eyes seems to provide more motivation to not only continue the road to success, but to appreciate the progress you have made. 


Then the actual day of competition arrives.  It is one hour before you take your position on the starting blocks at the "Bird's Nest" stadium in Beijing or on the mat at the National Indoor Stadium for the gymnastics final.  Should you be imagining the medal ceremony and listening to your country's national anthem at that point?  In a recent Denver Post article, Peter Haberl, senior sports psychologist for the U.S. Olympic Committee says, "It takes a great deal of ability and skill to stay focused on the task at hand."  

He distinguishes between an "outcome" goal, (receiving the medal) and "performance" (improving scores/times) and "process" (improving technique) goals.  "The difference is that these types of goals are much more under the control of the athlete," explains Haberl. "The process goal, in particular, directs attention to the here and now, which allows the athlete to totally focus on the doing of the activity; this is key to performing well.  This sounds simple but it really is quite difficult because the mind takes you to the past and the future all the time, particularly in the Olympic environment with its plethora of distractions and enticing rewards." 


Mental imagery is a well-known tool for every athlete to make distant and difficult goals seem attainable.  By seeing your future accomplishments through the eyes of others, you can attach more importance and reward to achieving them.  Just imagine yourself in London in 2012!

ResearchBlogging.org

Vasquez, N.A. (2007). Seeing Future Success: Does Imagery Perspective Influence Achievement Motivation?. Personality and Social Psychology Bulletin, 33(10), 1392-1405.


Libby, L.K., Eibach, R.P., Gilovich, T. (2005). Here's Looking at Me: The Effect of Memory Perspective on Assessments of Personal Change.. Journal of Personality and Social Psychology, 88(1), 50-62. DOI: 10.1037/0022-3514.88.1.50

Lifting The Fog Of Sports Concussions


A concussion, clinically known as a Mild Traumatic Brain Injury (MTBI), is one of the most common yet least understood sports injuries.  According to the Centers for Disease Control, there are as many as 300,000 sports and recreation-related concussions each year in the U.S., yet the diagnosis, immediate treatment and long-term effects are still a mystery to most coaches, parents and even some clinicians.  

The injury can be deceiving as there is rarely any obvious signs of trauma.  If the head is not bleeding and the player either does not lose consciouness or regains it after a brief lapse, the potential damage is hidden and the usual "tough guy" mentality is to "shake it off" and get back in the game.


Leigh Steinberg, agent and representative to some of the top professional athletes in the world (including NFL QBs Ben Roethlisberger and Matt Leinart), is tired of this ignorance and attitude.  "My clients, from the day they played Pop Warner football, are taught to believe ignoring pain, playing with pain and being part of the playing unit was the most important value," Steinberg said, "I was terrified at the understanding of how tender and narrow that bond was between cognition and consciousness and dementia and confusion".  Which is why he was the keynote speaker at last week's "New Developments in Sports-Related Concussions" conference hosted by the University of Pittsburgh Medical College Sport Medicine Department in Pittsburgh. 

Leading researchers gathered to discuss the latest research on sports-related concussions, their diagnosis and treatment.  "There's been huge advancement in this area," said Dr. Micky Collins, the assistant director for the UPMC Sports Medicine Program. "We've learned more in the past five years than the previous 50 combined."


So, what is a concussion?  The CDC defines a concussion as "a complex pathophysiologic process affecting the brain, induced by traumatic biomechanical forces secondary to direct or indirect forces to the head."  Being a "mild" form of traumatic brain injury, it is generally believed that there is no actual structural damage to the brain from a concussion, but more a disruption in the biochemistry and electrical processes between neurons.  

The brain is surrounded by cerebrospinal fluid, which is supposed to provide some protection from minor blows to the head.  However, a harder hit can cause rotational forces that affect a wide area of the brain, but most importantly the mid-brain and the reticular activating system which may explain the loss of consciousness in some cases.  

For some athletes, the concussion symptoms take longer to disappear in what is known as post-concussion syndrome.  It is not known whether this is from some hidden structural damage or more permanent disruption to neuronal activity.  Repeated concussions over time can lead to a condition known as dementia pugilistica, with long-term impairments to speech, memory and mental processing.

After the initial concussion, returning to the field before symptoms clear raises the risk of second impact syndrome, which can cause more serious, long-term effects.  As part of their "Heads Up" concussion awareness campaign, the CDC offers this video story of Brandon Schultz, a high school football player, who was not properly diagnosed after an initial concussion and suffered a second hit the following week, which permanently changed his life.  Without some clinical help, the player, parents and coach can only rely on the lack of obvious symptoms before declaring a concussion "healed".  

However, making this "return to play" decision is now getting some help from some new post-concussion tests.  The first is a neurological skills test called ImPACT (Immediate Post-Concussion and Cognitive Testing) created by the same researchers at UPMC.  It is an online test given to athletes after a concussion to measure their performance in attention span, working memory, sustained and selective attention time, response variability, problem solving and reaction time.  Comparing a "concussed" athlete's performance on the test with a baseline measurement will help the physician decide if the brain has healed sufficiently.

However, Dr. Collins and his team wanted to add physiological data to the psychological testing to see if there was a match between brain activity, skill testing and reported symptoms after a concussion.  In a study released last year in the journal Neurosugery, they performed functional MRI (fMRI) brain imaging studies on 28 concussed high-school athletes while they performed certain working memory tasks to see if there was a significant link between performance on the tests and changes in brain activation.  They were tested about one week after injury and again after the normal clinical recovery period.

“In our study, using fMRI, we demonstrate that the functioning of a network of brain regions is significantly associated with both the severity of concussion symptoms and time to recover,” said Jamie Pardini, Ph.D., a neuropsychologist on the clinical and research staff of the UPMC concussion program and co-author of the study.  
 "We identified networks of brain regions where changes in functional activation were associated with performance on computerized neurocognitive testing and certain post-concussion symptoms,” Dr. Pardini added. "Also, our study confirms previous research suggesting that there are neurophysiological abnormalities that can be measured even after a seemingly mild concussion.” 

Putting better assessment tools in the hands of athletic trainers and coaches will provide evidence-based coaching decisions that are best for the athlete's health.  Better decisions will also ease the minds of parents knowing their child has fully recovered from their "invisible" injury.


ResearchBlogging.org

Lovell, M.R., Pardini, J.E., Welling, J., Collins, M.W., Bakal, J., Lazar, N., Roush, R., Eddy, W.F., Becker, J.T. (2007). FUNCTIONAL BRAIN ABNORMALITIES ARE RELATED TO CLINICAL RECOVERY AND TIME TO RETURN-TO-PLAY IN ATHLETES. Neurosurgery, 61(2), 352-360. DOI: 10.1227/01.NEU.0000279985.94168.7F

HGH - Human Growth Hoax?

Athletes, both professional and amateur, as well as the general public are convinced that human growth hormone (HGH), Erythropoietin (EPO) and anabolic-androgenic steroids (AAS) are all artificial and controversial paths to improved performance in sports.  The recent headlines that have included Barry Bonds, Marion Jones, Floyd Landis, Dwayne Chambers, Jose Canseco, Jason Giambi, Roger Clemens and many lesser known names (see the amazingly long list of doping cases in sport) have referred to these three substances interchangeably leaving the public confused about who took what from whom.  With so many athletes willing to gamble with their futures, they must be confident that they will see significant short-term results.  

So, is it worth the risk?  Two very interesting recent studies provide some answers on at least one of the substances, HGH.


A team at the Stanford University School of Medicine, led by Hau Liu MD, recently reviewed 27 historical studies on the effects of HGH on athletic performance, dating back to 1966 (see reference below).  They wanted to see if there were any definitive links between HGH use and improved results.  In some of the studies, test volunteers who received HGH did develop more lean body mass, but also developed more lactate during aerobic testing which inhibited rather than helped performance.  While their muscle mass increased, other markers of athletic fitness, such as VO2max remained unchanged.  “The key takeaway is that we don’t have any good scientific evidence that growth hormone improves athletic performance,” said senior author Andrew Hoffman, MD, professor of endocrinology, gerontology and metabolism.



Both Liu and Hoffman cautioned that the amounts of HGH given to these test subjects may be much lower than the the purported levels claimed to be taken by professional athletes.  They also pointed out that at a professional level, a very slight improvement might be all that is necessary to get an edge of your opponent.  Hoffman also added an insightful comment, “So much of athletic performance at the professional level is psychological.”  If an athlete takes HGH, sees some muscle mass growth and isn't 100% sure of its performance capabilities, might he assume he now has other "Superman" powers?



That is exactly the premise that a research team from Garvan Institute of Medical Research in Sydney, Australia used to find out if HGH users simply relied on a placebo effect.  Sixty-four participants, young adult recreational athletes, were divided into two groups of 32 and tested for a baseline of athletic ability in endurance, strength, power and sprinting.  One group received growth hormone and the other group received a simple placebo.  It was a "double-blind" study in that neither the participants nor the researchers knew during the testing which substance each group received.



At the end of the 8 week treatment, the athletes were asked if they thought they were in the HGH group or the placebo group.  Half of the group that had received the placebo incorrectly guessed that they were on HGH.  Not too surprisingly, the majority of the "incorrect guessers" were men.  Here's where it gets interesting.  The incorrect guessers also thought that their athletic abilities had improved over the 8 week period.  The team retested all of the placebo group and actually did find improvement across all of the tests, but only significantly in the high-jump test.


Jennifer Hansen, a nurse researcher and Dr. Ken Ho, head of the pituitary research unit at Garvan have not released the data on the group that did receive the HGH, but they will in their final report coming soon.



So, let's recap.  On the one hand, we have a research review that claims there is not yet any scientific evidence that HGH actually improves sports performance.  Yet, we have hundreds, if not thousands, of athletes illegally using HGH for performance gain.  Showing the effect of the "if its good enough for them, its good enough for me" beliefs of the public regarding professional athlete use of HGH, we now have research that shows even those who received a placebo, but believed they were taking HGH not only thought they were improving but actually did improve a little.  Once again, we see the power of our own natural, non-supplemented brain to convince (or fool) ourselves to perform at higher levels than we thought possible.





ResearchBlogging.org


Liu, H., Bravata, D.M., Olkin, I., Friedlander, A., Liu, V., Roberts, B., Bendavid, E., Saynina, O., Salpeter, S.R., Garber, A.M. (2008). Systematic review: the effects of growth hormone on athletic performance.. Annals of Internal Medicine, 148(10), 747-758.

Sideline Raging Soccer Moms (and Dads!)

Visit any youth soccer field, baseball diamond, basketball court or football field and you will likely see them:  parents behaving badly.  Take a look at this Good Morning America report:

These are the extremes, but at most games, you can find at least one adult making comments at the referee, shouting at their child, or having a verbal exchange with another parent.  Thankfully, these parents represent only a small percentage of those attending the game.  Does that mean the others don't become upset at something during the game?  Usually not, as there are lots of opportunities to dispute a bad call or observe rough play or react to one of these loud parents.  

The difference is in our basic personality psyche, according to Jay Goldstein, a kinesiology doctoral student at the University of Maryland School of Public Health.  His thesis, recently published in the Journal of Applied Social Psychology (see reference below), hypothesized that a parent with "control-oriented" personality would react to events at a game more than a parent with an "autonomy-oriented" personality.

According to Goldstein, defending our ego is what usually gets us in trouble when we feel insulted or take something personally.  At youth sports games, we transfer this pride to our kids, so if someone threatens their success on the field, we often take it personally.  The control-oriented parent is more likely to react with a verbal or sometimes physical response, while an autonomy-oriented parent is better able to internalize and maintain their emotions.  This "control" vs. "autonomy" comparison has also been seen in research on "road rage", when drivers react violently to another driver's actions.

Goldstein and his team focused their research on suburban Washington soccer parents back in 2004.  They designed a survey for parents to fill out prior to watching a youth soccer game that would help categorize them as control or autonomy-oriented.  Immediately after the game ended, another survey was given to the parents that asked about any incidents during the game that made them angry on a scale of 1, slightly angry, to 7, furious.  They were also asked what action they took when they were angry.  Choices included "did nothing" to more aggressive acts like walking towards the field and/or yelling or confronting either the referee, their own child, or another player/parent.  53% of the 340 parents surveyed reported getting angry at something during the game, while about 40% reported doing something about their anger.

There was a direct and significant correlation between control-oriented parents, as identified in the pre-game survey, and the level of angry actions they took during the game.  Autonomy-oriented parents still got mad, but reported less aggressive reactions.  As Goldstein notes, “Regardless of their personality type, all parents were susceptible to becoming more aggressive as a result of viewing actions on the field as affronts to them or their kids.  However, that being said, it took autonomy-oriented parents longer to get there as compared to the control-oriented parents.”

So, now that we know the rather obvious conclusion that parents who yell at other motorists are also likely to yell at referees, what can we do about it?  Goldstein sees this study as a first step.  He hopes to study a wider cross-section of sports and socio-economic populations.  Many youth sports organizations require parents to sign a pre-season "reminder" code of conduct, but those are often forgotten in the heat of the battle on the field.  

Maybe by offering the same type of personality survey prior to the season, the "control-oriented" parents can be offered resources to help them manage their tempers and reactions during a game.  Since referees were the number one source of frustration reported by parents, two solutions are being explored by many organizations; more thorough referee training and quality control while also better training of parents on the rules of the game which often cause the confusion.

Sports contests will always be emotional, from kids' games all the way up to professionals.  Keeping the games in perspective and our reactions positive are tough things to do but when it comes to our kids, it is required.

ResearchBlogging.org

Goldstein, J.D., Iso-Ahola, S.E. (2008). Determinants of Parents' Sideline-Rage Emotions and Behaviors at Youth Soccer Games. Journal of Applied Social Psychology, 38(6), 1442-1462. DOI: 10.1111/j.1559-1816.2008.00355.x

Does Practice Make Perfect?


For years, sport science and motor control research has added support to the fundamental assertions that "practice makes perfect" and "repetition is the mother of habit".  Shooting 100 free throws, kicking 100 balls on goal or fielding 100 ground balls must certainly build the type of motor programs in the brain that will only help make the 101st play during the game.  K. Anders Ericsson, the "expert on experts", has defined the minimum amount of "deliberate practice" necessary to raise any novice to the level of expert as 10 years or 10,000 hours.

However, many questions still exist as to exactly how we learn these skills.  What changes happen in our brains when we teach ourselves a new task?  What is the most effective and efficient way to master a skill?  Do we have to be actually performing the skill to learn it, or could we just watch and learn? 


Then, once we have learned a new skill and can repeat it with good consistency, why can't we perform it perfectly every time?  Why can't we make every free throw, score with every shot on goal, and field each ground ball with no errors?  We would expect our brain to just be able to repeat this learned motor program with the same level of accuracy.

To answer these questions, we look at two recent studies.  The first, by a team at Dartmouth's Department of Psychological and Brain Sciences, led by Emily Cross, who is now a post-doc at Max Planck Institute for Cognitive and Brain Sciences in Leipzig, Germany, wanted to know if we need to physically perform a new task to learn it, or if merely observing others doing it would be enough. 

The "task" they chose was to learn new dance steps from a video game eerily similar to "Dance, Dance Revolution".  If you (or your kids) have never seen this game, its a video game that you actually get up off the couch and participate in, kind of like the Nintendo Wii.  In this game, a computer screen (or TV) shows you the dance moves and you have to imitate them on a plastic mat on the floor connected to the game.  If you make the right steps, timed to the music, you score higher.

Cross and the team "taught" their subjects in three groups.  The first group was able to view and practice the new routine.  The second group only was allowed to watch the new routine, but not physically practice it.  The third group was a control group that did not get any training at all.  The subjects were later scanned using functional magnetic resonance imaging (fMRI) while they watched the same routine they had either learned (actively or passively) or not seen (the control group).


As predicted, they found that the two trained groups showed common activity in the Action Observance Network (AON) in the brain (see image on left), a group of neural regions found mostly in the inferior parietal and premotor cortices of the brain (near the top of the head) responsible for motor skills and some memory functions.  In other words, whether they physically practised the new steps or just watched the new steps, the same areas of the brain were activated and their performance of the new steps were significantly similar.  The team put together a great video summarizing the experiment.  

One of the themes from this study is that, indeed, learning a motor skill takes place in the brain.  This may seem like an obvious statement, but its important to accept that the movements that our limbs make when performing a skill are controlled by the instructions provided from the brain.  So, what happens when the skill breaks down?  Why did the quarterback throw behind the receiver when we have seen him make that same pass accurately many times?  


To stay true to our theme, we have to blame the brain.  It may be more logical to point to a mechanical breakdown in the player's form or body movements, but the "set-up" for those movements starts with the mental preparation performed by the brain.


In the second study, electrical engineers at Stanford University took a look at these questions to try to identify where the inconsistencies of movement start.  They chose to focus on the "mental preparation" stage which occurs just before the actual movement.  During this stage, the brain plans the coordination and goal for the movement prior to initiating it.  The team designed a test where monkeys would reach for a green dot or a red dot.  If green, they were trained to reach slowly for the dot; if red, to reach quickly.  By monitoring the areas of the monkeys' brains through fMRI, they observed activity in the AON prior to the move and during the move.  


Over repeated trials, changes in reach speed were associated with changes in pre-movement activity.  So, instead of perfectly consistent reach times by the monkeys, they saw variation, like we might see when trying to throw strikes with a baseball many times in a row.  Their conclusion was that this planning activity in the brain does have an effect on the outcome of the activity.  Previously, research had focused only on breakdowns during the actual move and in the mechanics of muscles.  This study shows that the origin of the error may start earlier.


As electrical engineering Assistant Professor Krishna Shenoy stated, "the main reason you can't move the same way each and every time, such as swinging a golf club, is that your brain can't plan the swing the same way each time."  

Postdoctoral researcher and co-author Mark Churchland added, "The nervous system was not designed to do the same thing over and over again.  The nervous system was designed to be flexible. You typically find yourself doing things you've never done before." 
The Stanford team also has made a nice short video synopsis of their study.

Does practice make perfect?  First, we must define "practice".  We saw that it could be either active or passive.  Second, we know sports skills are never "perfect" all the time, and need to understand where the error starts before we can begin to fix it.